Meandering due to large eddies and the statistically self-similar dynamics of quasi-two-dimensional jets

2012 ◽  
Vol 692 ◽  
pp. 347-368 ◽  
Author(s):  
Julien R. Landel ◽  
C. P. Caulfield ◽  
Andrew W. Woods

AbstractWe investigate experimentally the structure of quasi-two-dimensional plane turbulent jets discharged vertically from a slot of width $d$ into a fluid confined between two relatively close rigid boundaries with gap $W\ensuremath{\sim} O(d)$. At large vertical distances $z\gg W$ the jet structure consists of a meandering core with large counter-rotating eddies, which develop on alternate sides of the core. Using particle image velocimetry, we observe an inverse cascade typical of quasi-two-dimensional turbulence where both the core and the eddies grow linearly with $z$ and travel at an average speed proportional to ${z}^{\ensuremath{-} 1/ 2} $. However, although the present study concerns quasi-two-dimensional confined jets, the jets are self-similar and the mean properties are consistent with both experimental results and theoretical models of the time-averaged properties of fully unconfined planar two-dimensional jets. We believe that the dynamics of the interacting core and large eddies accounts for the Gaussian profile of the mean vertical velocity as shown by the spatial statistical distribution of the core and eddy structure. The lateral excursions (caused by the propagating eddies) of this high-speed central core produce a Gaussian distribution for the time-averaged vertical velocity. In addition, we find that approximately 75 % of the total momentum flux of the jet is contained within the core. The eddies travel substantially slower (at approximately 25 % of the maximum speed of the core) at each height and their growth is primarily attributed to entrainment of ambient fluid. The frequency of occurrence of the eddies decreases in a stepwise manner due to merging, with a well-defined minimum value of the corresponding Strouhal number $\mathit{St}\geq 0. 07$.

1994 ◽  
Vol 116 (2) ◽  
pp. 238-246 ◽  
Author(s):  
S. Acharya ◽  
S. Dutta ◽  
T. A. Myrum ◽  
R. S. Baker

The ability of the nonlinear k–ε turbulence model to predict the flow in a separated duct flow past a wall-mounted, two-dimensional rib was assessed through comparisons with the standard k–ε model and experimental results. Improved predictions of the streamwise turbulence intensity and the mean streamwise velocities near the high-speed edge of the separated shear layer and in the flow downstream of reattachment were obtained with the nonlinear model. More realistic predictions of the production and dissipation of the turbulent kinetic energy near reattachment were also obtained. Otherwise, the performance of the two models was comparable, with both models performing quite well in the core flow regions and close to reattachment and both models performing poorly in the separated and shear-layer regions close to the rib.


2021 ◽  
Vol 156 (A1) ◽  
Author(s):  
B J French ◽  
G A Thomas ◽  
M R Davis

Slam characteristics of a 112m INCAT wave piercing catamaran in a range of realistic irregular sea conditions are presented in this paper. Towing tank testing of a 2.5 m hydroelastic segmented catamaran model was used to gather a database of slam events in irregular seas. The model was instrumented to measure motions, centrebow surface pressures and forces, encountered wave elevations and wave elevations within the bow area tunnel arches. From these measurements characteristics of the vessel slamming behaviour are examined: in particular relative vertical velocity, centrebow immersion, archway wave elevations and slam load distributions. A total of 2,098 slam events were identified over 22 different conditions, each containing about 80 to 100 slam events. The data, although inherently scattered, shows that encounter wave frequency and significant wave height are important parameters with regard to centrebow slamming. Relative vertical velocity was found to be a poor indicator of slam magnitude and slams were found to occur before the centrebow arch tunnel was completely filled, supporting the application of a two-dimensional filling height parameter as a slam indicator.


1982 ◽  
Vol 123 ◽  
pp. 523-535 ◽  
Author(s):  
J. W. Oler ◽  
V. W. Goldschmidt

The mean-velocity profiles and entrainment rates in the similarity region of a two-dimensional jet are generated by a simple superposition of Rankine vortices arranged to represent a vortex street. The spacings between the vortex centres, their two-dimensional offsets from the centreline, as well as the core radii and circulation strengths, are all governed by similarity relationships and based upon experimental data.Major details of the mean flow field such as the axial and lateral mean-velocity components and the magnitude of the Reynolds stress are properly determined by the model. The sign of the Reynolds stress is, however, not properly predicted.


2017 ◽  
Vol 833 ◽  
Author(s):  
Dong-hyuk Shin ◽  
A. J. Aspden ◽  
Edward S. Richardson

The flow in a decelerating turbulent round jet is investigated using direct numerical simulation. The simulations are initialised with a flow field from a statistically stationary turbulent jet. Upon stopping the inflow, a deceleration wave passes through the jet, behind which the velocity field evolves towards a new statistically unsteady self-similar state. Assumption of unsteady self-similar behaviour leads to analytical relations concerning the evolution of the centreline mean axial velocity and the shapes of the radial profiles of the velocity statistics. Consistency between these predictions and the simulation data supports the use of the assumption of self-similarity. The mean radial velocity is predicted to reverse in direction near to the jet centreline as the deceleration wave passes, contributing to an approximately threefold increase in the normalised mass entrainment rate. The shape of the mean axial velocity profile undergoes a relatively small change across the deceleration transient, and this observation provides direct evidence in support of previous models that have assumed that the mean axial velocity profile, and in some cases also the jet spreading angle, remain approximately constant within unsteady jets.


1984 ◽  
Vol 106 (2) ◽  
pp. 187-192 ◽  
Author(s):  
J. W. Oler ◽  
V. W. Goldschmidt

The strongest indication of an ordered structure in the similarity region of plane jet flows is the well documented (but controversial) apparent “flapping” behavior. Previously, the negative correlation between probes placed on opposite sides of the jet centerline has been attributed to the periodic displacement of the mean velocity profile centerline about its average position, i.e., a flapping motion. The present investigation is directed at evaluating the premise of an essentially two-dimensional von Karman vortex street as being responsible for the apparent “flapping” behavior.


2003 ◽  
Vol 125 (5) ◽  
pp. 806-812 ◽  
Author(s):  
Antonio Filippone

A theoretical model based on an indicial method is proposed to simulate the unsteady response of a series of road vehicles, including high-speed trains, sports utility vehicles, sports cars, caravans, and pick-up trucks. The response is described in the frequency domain by the aerodynamic admittance for both side force and yawing moment. The properties of the admittance function are discussed for basic two-dimensional geometries, and the existence of critical damping is shown for a number of cases. The vehicles are undergoing aerodynamic forcing in the form of a gust. Systems with one degree-of-freedom were considered. The results show that the main parameters affecting the vehicle’s aerodynamic response are the mean vehicle length compared to the wave length of the gust, and the inclination of the nose.


2021 ◽  
Vol 118 (12) ◽  
pp. e2011815118
Author(s):  
Jugroop Singh ◽  
Aldwin Pagulayan ◽  
Brian A. Camley ◽  
Amrinder S. Nain

Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue—the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell–cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed—cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell–cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell–cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix—the geometry of the fiber can generate entirely new behaviors.


1990 ◽  
Vol 34 (03) ◽  
pp. 163-171 ◽  
Author(s):  
Ken Takagi ◽  
Akihiro Niimi

A theoretical study of the phenomenon of deck wetness is presented and effects of the flare shape are discussed. It is shown that two-dimensional (2D) self-similar flow is applicable to the analysis of deck wetness on the assumption of long wavelength and high Froude number. The 2D self-similar flow which includes effects of the deck is calculated by an analytical method. Calculated results are compared with experimental results obtained at the limit of long wavelength, that is, in still water. Calculated results are used to determine the most suitable flare angle, and it is shown that increased flare is more effective than a knuckle to reduce bow deck wetness.


1972 ◽  
Vol 1 (4) ◽  
pp. 182-188
Author(s):  
T.B. Hedley ◽  
J.F. Keffer

The mean flow field of a two-dimensional turbulent wall jet which encounters a uniform suction is examined. A marked increase in wall shear stress was observed for all suction levels as the jet moved into the suction zone. When the suction level is moderate a viscous sublayer exists next to the surface. The dominance of the flow by the free jet motion however prevents any law-of-the-wall representation for the adjacent turbulent region and a velocity defect model is found to be more satisfactory. One can interpret this lack of an extensive equilibrium layer to mean that the transport processes are controlled by the action of the large eddies over almost the entire wall jet zone, with or without suction.


1995 ◽  
Vol 303 ◽  
pp. 155-167 ◽  
Author(s):  
F. A. de Souza ◽  
V. D. Nguyen ◽  
S. Tavoularis

Uniformly sheared flows have been generated in a high-speed wind tunnel at shear rates higher than previously achieved, in an effort to approach those in the inner turbulent boundary layer. As at lower shear rates, the turbulence structure was found to attain a self-similar state with approximately constant anisotropies and exponential kinetic energy growth. The normal Reynolds stress anisotropies showed no systematic dependence upon the mean shear within the examined range; however, the shear stress anisotropy was significantly lower than the low-shear values, in conformity with boundary layer measurements and direct numerical simulations of homogeneous shear flow.


Sign in / Sign up

Export Citation Format

Share Document