Longitudinal–transverse aerodynamic force in viscous compressible complex flow

2014 ◽  
Vol 756 ◽  
pp. 226-251 ◽  
Author(s):  
L. Q. Liu ◽  
Y. P. Shi ◽  
J. Y. Zhu ◽  
W. D. Su ◽  
S. F. Zou ◽  
...  

AbstractWe report our systematic development of a general and exact theory for diagnosis of total force and moment exerted on a generic body moving and deforming in a calorically perfect gas. The total force and moment consist of a longitudinal part (L-force) due to compressibility and irreversible thermodynamics, and a transverse part (T-force) due to shearing. The latter exists in incompressible flow but is now modulated by the former. The theory represents a full extension of a unified incompressible diagnosis theory of the same type developed by J. Z. Wu and coworkers to compressible flow, with Mach number ranging from low-subsonic to moderate-supersonic flows. Combined with computational fluid dynamics (CFD) simulation, the theory permits quantitative identification of various complex flow structures and processes responsible for the forces, and thereby enables rational optimal configuration design and flow control. The theory is confirmed by a numerical simulation of circular-cylinder flow in the range of free-stream Mach number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}M_{\infty }$ between 0.2 and 2.0. The L-drag and T-drag of the cylinder vary with $M_{\infty }$ in different ways, the underlying physical mechanisms of which are analysed. Moreover, each L-force and T-force integrand contains a universal factor of local Mach number $M$. Our preliminary tests suggest that the possibility of finding new similarity rules for each force constituent could be quite promising.

2018 ◽  
Vol 857 ◽  
pp. 878-906 ◽  
Author(s):  
T. Nagata ◽  
T. Nonomura ◽  
S. Takahashi ◽  
Y. Mizuno ◽  
K. Fukuda

In this study, direct numerical simulation of the flow around a rotating sphere at high Mach and low Reynolds numbers is conducted to investigate the effects of rotation rate and Mach number upon aerodynamic force coefficients and wake structures. The simulation is carried out by solving the three-dimensional compressible Navier–Stokes equations. A free-stream Reynolds number (based on the free-stream velocity, density and viscosity coefficient and the diameter of the sphere) is set to be between 100 and 300, the free-stream Mach number is set to be between 0.2 and 2.0, and the dimensionless rotation rate defined by the ratio of the free-stream and surface velocities above the equator is set between 0.0 and 1.0. Thus, we have clarified the following points: (1) as free-stream Mach number increased, the increment of the lift coefficient due to rotation was reduced; (2) under subsonic conditions, the drag coefficient increased with increase of the rotation rate, whereas under supersonic conditions, the increment of the drag coefficient was reduced with increasing Mach number; and (3) the mode of the wake structure becomes low-Reynolds-number-like as the Mach number is increased.


2021 ◽  
Vol 91 (4) ◽  
pp. 558
Author(s):  
А.В. Потапкин ◽  
Д.Ю. Москвичев

The problem of a sonic boom generated by a slender body and local regions of supersonic flow heating is solved numerically. The free-stream Mach number of the air flow is 2. The calculations are performed by a combined method of phantom bodies. The results show that local heating of the incoming flow can ensure sonic boom mitigation. The sonic boom level depends on the number of local regions of incoming flow heating. One region of flow heating can reduce the sonic boom by 20% as compared to the sonic boom level in the cold flow. Moreover, consecutive heating of the incoming flow in two regions provides sonic boom reduction by more than 30%.


2019 ◽  
Vol 43 (1) ◽  
pp. 112-121
Author(s):  
Behnaz Beheshti Boroumand ◽  
Mahmoud Mani

Boundary layer and wake behaviors are strongly affected by airfoil motion. Moreover, parameters like body oscillation frequency, oscillation type, Mach number, and angle of attack play main roles in wake characteristics. In this research, both static and dynamic tests were carried out in a tri-sonic wind tunnel to study wake profiles experimentally by hot wire anemometry. All data were recorded at a free stream Mach number of 0.4. Quarter-length and half-length of chord were also considered as downstream distances from the trailing edge in pitching motions of mean angle of attack of −0.4°. Frequencies of 3 Hz and 6 Hz with amplitude of 3° were chosen as oscillation parameters. Voltages at hot wire outputs were measured and analyzed qualitatively and statistically with root-mean-square, correlation, mean value distribution, time history, and frequency. Flow parameters were obtained by computational studies under similar experimental test conditions. The wake characteristics obtained from numerical and experimental methods were compared.


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Chunhua Sheng

An improved preconditioning is proposed for viscous flow computations in rotating and nonrotating frames at arbitrary Mach numbers. The key to the current method is the use of both free stream Mach number and rotating Mach number to construct a preconditioning matrix, which is applied to the compressible governing equations written in terms of primitive variables. A Fourier analysis is conducted that reveals the efficacy of the modified preconditioning. Numerical approximations for the convective and diffusive fluxes are detailed based on the preconditioned system of equations. A set of boundary conditions using characteristic variables are described for internal and external flow computations. Numerical validations are performed on four realistic viscous flows in both fixed and rotating frames. The results indicated that the modified preconditioning has a superior performance compared to the original method to predict flows from extremely low to supersonic Mach numbers.


1983 ◽  
Vol 105 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S. J. Price ◽  
M. P. Paidoussis

This paper represents the first stage of a fundamental investigation of the vibration phenomena induced in heat exchanger bundles subject to a cross-flow. Using aerodynamic force coefficient data, obtained experimentally from a static wind tunnel model, a linearized quasi-static analysis is employed to analyze the stability of an infinite double row of circular cylinders in uniform cross-flow. From the analysis it is shown that the instability is a result of the negative fluid damping forces, resulting from the complex flow pattern in the row. A new expression is obtained relating the critical velocity for the onset of instability to the damping parameter, the mass parameter and the pitch ratio of the cylinders. The expression is compared with experimental data available in the literature, from dynamic laboratory results, and a good correlation is obtained. Using this stability analysis the effect of mechanical coupling and frequency detuning, both between modes in one cylinder and modes in adjacent cylinders, is examined. In general it is shown that mechanical coupling is destabilizing and frequency detuning stabilizing.


Author(s):  
L. Eça ◽  
G. Vaz

This document introduces the Workshop on Verification and Validation (V&V) of CFD for Offshore Flows, to be held during OMAE2012. It presents a brief introduction to the purpose of Verification and Validation with the identification of the goals of code and solution verification and validation. Within this context, three test-cases are proposed: Case-I of code verification, Case-II of solution verification and Case-III of solution verification and validation. Case-I consists on a 3D manufactured solution of an unsteady turbulent flow. Case-II is an exercise on the canonical problem of the infinite smooth circular cylinder flow at different Reynolds numbers. Case-III is a more complex flow around a straked-riser. The participants are asked to perform at least one of these test-cases. The objectives for the three proposed test-cases are presented, together with a detailed description of the numerical settings to be used, and the results to be obtained and sent to the Workshop organization. At the end some considerations on general conditions, paper submission, deadlines, and encouragements are stated.


Sign in / Sign up

Export Citation Format

Share Document