scholarly journals A one-dimensional model for tidal array design based on three-scale dynamics

2017 ◽  
Vol 825 ◽  
pp. 651-676 ◽  
Author(s):  
Vikrant Gupta ◽  
Anna M. Young

In order to make the extraction of tidal current energy economically viable, the power production per turbine must be optimised in each tidal array. Furthermore, the impact of power extraction on the marine flow environment must be understood. These two aims mean that designers must be able to model different configurations of a tidal array in order to create the most efficient, least invasive arrangement. In this paper, an analytical model is developed for array design in idealised rectangular tidal channels with idealised turbines. The model includes the effects of (i) local blockage, (ii) surface deformation and (iii) added drag due to the installation of the array. While these effects have been accounted for individually in past work, the model presented here is the first to include all three such that the interaction between different effects can be understood. Results are presented for optimal local blockage and turbine resistance as functions of inherent channel drag coefficient, channel length and Froude number at various global blockage values. It will be shown that it is necessary to model the effects of local blockage and added drag simultaneously in order to obtain the design parameters of a tidal array (global blockage, local blockage and turbine resistance), which will maximise the power extraction per turbine. Neglecting either effect will lead to an array design with lower power extraction than the optimum, the addition of unnecessary extra turbines and higher lost power from the array.

Author(s):  
Chaoqin Zhai ◽  
David H. Archer ◽  
John C. Fischer

This paper presents the development of an equation based model to simulate the combined heat and mass transfer in the desiccant wheels. The performance model is one dimensional in the axial direction. It applies a lumped formulation in the thickness direction of the desiccant and the substrate. The boundary conditions of this problem represent the inlet outside/process and building exhaust/regeneration air conditions as well as the adiabatic condition of the two ends of the desiccant composite. The solutions of this model are iterated until the wheel reaches periodic steady state operation. The modeling results are obtained as the changes of the outside/process and building exhaust/regeneration air conditions along the wheel depth and the wheel rotation. This performance model relates the wheel’s design parameters, such as the wheel dimension, the channel size and the desiccant properties, and the wheel’s operating variables, such as the rotary speed and the regeneration air flowrate, to its operating performance. The impact of some practical issues, such as wheel purge, residual water in the desiccant and the wheel supporting structure, on the wheel performance has also been investigated.


2021 ◽  
Author(s):  
Abhishek Acharya

Abstract Estimation of the saturation voltages of beyond CMOS devices is essential for the accurate circuit design and analysis. In this work, we look at the influence of device design parameters on the saturation voltage (VDSAT) of a Tunnel Field Effect Transistor (TFET) using 3D TCAD Numerical Simulations. The variation in channel length, underlap at gate-drain, source/drain doping, and the source/channel material are some of the vital optimization parameters in the design and optimization of TFET based circuits. We observe, with the increasing value of drain bias (VDS), TFET device initially enters in the soft saturation state and subsequently a deep saturation state is attained. These voltages are altered with device variability and hence the analog performance. An increase in drain (source) doping increases (decreases) the soft saturation voltage of TFETs. It is also found that an early onset of saturation can be achieved by the gate-drain underlap in TFETs. The impact of short channel lengths is to worsen the perfect saturation phenomenon in Tunnel FETs. In addition, the reduction in nanowire diameter delays the saturation by few milivolts.


Author(s):  
I.G. Rusyak ◽  
◽  
V.A. Tenenev ◽  

The problem of the impact of the mathematical model dimension on the calculated intraballistic characteristics of a shot for the charges made of granulated powder is considered. Mathematical models of the shot are studied using the spatial (axisymmetric), one-dimensional, and zero-dimensional (thermodynamic) formulations. The thermodynamic model takes into account the distribution of the pressure and velocity of a gas-powder mixture behind the shot for a channel of variable cross-section. Comparison of simulation results is carried out in a wide range of loading parameters. It is shown that there is a range of the loading parameters for a thermodynamic approach to give satisfactory approximation to the parameters obtained using the gas-dynamic approach, which describes the flow of a heterogeneous reacting mixture with a separate consideration of phases and intergranular interactions between them. Notably that in the entire range of the charging parameters studied in this work, the one-dimensional and twodimensional gas-dynamic models only slightly differ from each other. Therefore, in the main pyrodynamic period, the actuation of the charge, made of granulated powder, can be simulated using a one-dimensional gas-dynamic model or a zero-dimensional thermodynamic model with allowance for spatial distribution of the pressure and velocity of the gas-powder mixture.


2021 ◽  
Vol 11 (1) ◽  
pp. 15-25
Author(s):  
Harman Ajiwibowo ◽  
Munawir Bintang Pratama

Previous studies have shown the abundance of tidal energy resources in Indonesia. However, some sites have yet to be considered. The Lepar Strait, for example, is located between Bangka and Lepar Islands. This paper describes a field survey and numerical modelling conducted in the Lepar Strait. The modelling was performed using Delft3D, with the aim of determining potential sites for harvesting tidal current energy and estimate the generated power. In the modelling, the domain decomposition method was employed for model downscaling, allowing grid resolution reaching 130 x 130 m2, which is sufficient to represent the narrow gaps between tiny islands in the area of interest. The National Bathymetric (Batnas) from the Geospatial Information Agency (BIG) and the International Hydrographic Organization (IHO) tide constituents were applied for the bathymetry and tide elevation boundaries. The comparison between the surveyed and modelled data showed a good agreement. The RMSE and r for water level are > 0.95 and < 0.15, and the RMSE for velocity was <0.19. Furthermore, an energetic flow reaching 1.5 m/s was found at the Northern part of Lepar Strait, situated at the narrow gaps. The Gorlov Helical Turbine was selected in this study due to shallow water and low mean velocity. In the 2019 model, the power density and power output at the best potential sites were 2,436.94 kWh/m2 and 1,870.41 kWh, respectively. This number is higher than those previously found in Kelabat Bay. Nonetheless, it is still far below the currently promising project in Larantuka and Lombok Straits. Future research is recommended, to conduct a detailed field measurement campaign and assess the impact of energy extraction in more detail.


2020 ◽  
Vol 1716 ◽  
pp. 012008
Author(s):  
P Vyshnavi ◽  
Nithya Venkatesan ◽  
A. Samad ◽  
E.J. Avital

2021 ◽  
Vol 17 (4) ◽  
pp. 1-26
Author(s):  
Md Musabbir Adnan ◽  
Sagarvarma Sayyaparaju ◽  
Samuel D. Brown ◽  
Mst Shamim Ara Shawkat ◽  
Catherine D. Schuman ◽  
...  

Spiking neural networks (SNN) offer a power efficient, biologically plausible learning paradigm by encoding information into spikes. The discovery of the memristor has accelerated the progress of spiking neuromorphic systems, as the intrinsic plasticity of the device makes it an ideal candidate to mimic a biological synapse. Despite providing a nanoscale form factor, non-volatility, and low-power operation, memristors suffer from device-level non-idealities, which impact system-level performance. To address these issues, this article presents a memristive crossbar-based neuromorphic system using unsupervised learning with twin-memristor synapses, fully digital pulse width modulated spike-timing-dependent plasticity, and homeostasis neurons. The implemented single-layer SNN was applied to a pattern-recognition task of classifying handwritten-digits. The performance of the system was analyzed by varying design parameters such as number of training epochs, neurons, and capacitors. Furthermore, the impact of memristor device non-idealities, such as device-switching mismatch, aging, failure, and process variations, were investigated and the resilience of the proposed system was demonstrated.


2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
David Balam-Tamayo ◽  
Carlos Málaga ◽  
Bernardo Figueroa-Espinoza

The performance and flow around an oscillating foil device for current energy extraction (a wingmill) was studied through numerical simulations. OpenFOAM was used in order to study the two-dimensional (2D) flow around a wingmill. A closed loop control law was coded in order to follow a reference angle of attack. The objective of this control law is to modify the angle of attack in order to enhance the lift force (and increase power extraction). Dimensional analysis suggests a compromise between the generator (or damper) stiffness and actuator/control gains, so a parametric study was carried out while using a new dimensionless number, called B, which represents this compromise. It was found that there is a maximum on the efficiency curve in terms of the aforementioned dimensionless parameter. The lessons that are learned from this fluid-structure and feedback coupling are discussed; this interaction, combined with the feedback dynamics, may trigger dynamic stall, thus decreasing the performance. Moreover, if the control strategy is not carefully selected, then the energy spent on the actuator may affect efficiency considerably. This type of simulation could allow for the system identification, control synthesis, and optimization of energy harvesting devices in future studies.


Author(s):  
Kiona Hagen Niehaus ◽  
Rebecca Fiebrink

This paper describes the process of developing a software tool for digital artistic exploration of 3D human figures. Previously available software for modeling mesh-based 3D human figures restricts user output based on normative assumptions about the form that a body might take, particularly in terms of gender, race, and disability status, which are reinforced by ubiquitous use of range-limited sliders mapped to singular high-level design parameters. CreatorCustom, the software prototype created during this research, is designed to foreground an exploratory approach to modeling 3D human bodies, treating the digital body as a sculptural landscape rather than a presupposed form for rote technical representation. Building on prior research into serendipity in Human-Computer Interaction and 3D modeling systems for users at various levels of proficiency, among other areas, this research comprises two qualitative studies and investigation of the impact on the first author's artistic practice. Study 1 uses interviews and practice sessions to explore the practices of six queer artists working with the body and the language, materials, and actions they use in their practice; these then informed the design of the software tool. Study 2 investigates the usability, creativity support, and bodily implications of the software when used by thirteen artists in a workshop. These studies reveal the importance of exploration and unexpectedness in artistic practice, and a desire for experimental digital approaches to the human form.


Sign in / Sign up

Export Citation Format

Share Document