scholarly journals Vitamin A status among children in China

2006 ◽  
Vol 9 (8) ◽  
pp. 955-960 ◽  
Author(s):  
Jiang Jingxiong ◽  
André Michael Toschke ◽  
Rüdiger von Kries ◽  
Berthold Koletzko ◽  
Lin Liangming

AbstractObjectiveThe objective of this study was to assess the prevalence of vitamin A deficiency (VAD) in children under 6 years old in China and to identify risk groups for VAD.DesignA cross-sectional survey was conducted in 14 provinces from coastal, inland and western geographic areas in China.SettingOne city (urban) and two counties (rural) were randomly selected from each province as survey areas.SubjectsAbout 200 children aged 0–6 years were randomly selected in each survey area. A blood sample was collected from each child. Data on sociodemographics and nutrition were obtained by interview of the mother or principal caregiver. Fluorescence microanalysis was used to analyse serum retinol concentration.ResultsVAD (serum retinol < 0.7 μmol l− 1) was observed in 957 out of 7826 children aged 0–6 years (12.2% of the entire study population), whereas severe VAD (serum retinol < 0.35 μmol l− 1) was found in 39 children (0.5%). The highest prevalences of VAD at >1 year of age were observed among children of mothers with minority ethnicity (22.7%) or poor education (19.8%) and in the poor western area (17.4%).ConclusionsVAD is a nutritional problem in children in China. Children living in the poor western area, having a mother with minority ethnicity or a mother with poor education have a high risk of VAD.

2006 ◽  
Vol 9 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Bradley A Woodruff ◽  
Heidi Michels Blanck ◽  
Laurence Slutsker ◽  
Susan T Cookson ◽  
Mary Kay Larson ◽  
...  

AbstractObjectiveTo investigate the prevalence of anaemia (haemoglobin < 11.0 to 13.0 g dl−1depending on age and sex group), iron deficiency (transferrin receptor concentration > 8.3 μg ml−1) and vitamin A deficiency (serum retinol < 0.7 μmoll−1) in adolescent refugees.DesignCross-sectional surveys.SettingKakuma refugee camp in Kenya and seven refugee camps in Nepal.SubjectsAdolescent refugee residents in these camps.ResultsAnaemia was present in 46% (95% confidence interval (CI): 42–51) of adolescents in Kenya and in 24% (95% CI: 20–28) of adolescents in Nepal. The sensitivity of palmar pallor in detecting anaemia was 21%. In addition, 43% (95% CI: 36–50) and 53% (95% CI: 46–61) of adolescents in Kenya and Nepal, respectively, had iron deficiency. In both surveys, anaemia occurred more commonly among adolescents with iron deficiency. Vitamin A deficiency was found in 15% (95% CI: 10–20) of adolescents in Kenya and 30% (95% CI: 24–37) of adolescents in Nepal. Night blindness was not more common in adolescents with vitamin A deficiency than in those without vitamin A deficiency. In Kenya, one of the seven adolescents with Bitot's spots had vitamin A deficiency.ConclusionsAnaemia, iron deficiency and vitamin A deficiency are common among adolescents in refugee populations. Such adolescents need to increase intakes of these nutrients; however, the lack of routine access makes programmes targeting adolescents difficult. Adolescent refugees should be considered for assessment along with other at-risk groups in displaced populations.


2014 ◽  
Vol 84 (Supplement 1) ◽  
pp. 52-59 ◽  
Author(s):  
Sherry A. Tanumihardjo ◽  
Anura V. Kurpad ◽  
Janet R. Hunt

The current use of serum retinol concentrations as a measurement of subclinical vitamin A deficiency is unsatisfactory for many reasons. The best technique available for vitamin A status assessment in humans is the measurement of total body pool size. Pool size is measured by the administration of retinol labelled with stable isotopes of carbon or hydrogen that are safe for human subjects, with subsequent measurement of the dilution of the labelled retinol within the body pool. However, the isotope techniques are time-consuming, technically challenging, and relatively expensive. There is also a need to assess different types of tracers and doses, and to establish clear guidelines for the use and interpretation of this method in different populations. Field-friendly improvements are desirable to encourage the application of this technique in developing countries where the need is greatest for monitoring the risk of vitamin A deficiency, the effectiveness of public health interventions, and the potential of hypervitaminosis due to combined supplement and fortification programs. These techniques should be applied to validate other less technical methods of assessing vitamin A deficiency. Another area of public health relevance for this technique is to understand the bioconversion of β-carotene to vitamin A, and its relation to existing vitamin A status, for future dietary diversification programs.


2009 ◽  
Vol 102 (3) ◽  
pp. 342-349 ◽  
Author(s):  
Julie A. Howe ◽  
Bussie Maziya-Dixon ◽  
Sherry A. Tanumihardjo

Efforts to increase β-carotene in cassava have been successful, but the ability of high-β-carotene cassava to prevent vitamin A deficiency has not been determined. Two studies investigated the bioefficacy of provitamin A in cassava and compared the effects of carotenoid content and variety on vitamin A status in vitamin A-depleted Mongolian gerbils (Meriones unguiculatus). Gerbils were fed a vitamin A-free diet 4 weeks prior to treatment. In Expt 1, treatments (ten gerbils per group) included 45 % high-β-carotene cassava, β-carotene and vitamin A supplements (intake matched to high-β-carotene cassava group), and oil control. In Expt 2, gerbils were fed cassava feeds with 1·8 or 4·3 nmol provitamin A/g prepared with two varieties. Gerbils were killed after 4 weeks. For Expt 1, liver vitamin A was higher (P < 0·05) in the vitamin A (1·45 (sd 0·23) μmol/liver), lower in the control (0·43 (sd 0·10) μmol/liver), but did not differ from the β-carotene group (0·77 (sd 0·12) μmol/liver) when compared with the high-β-carotene cassava group (0·69 (sd 0·20) μmol/liver). The bioconversion factor was 3·7 μg β-carotene to 1 μg retinol (2 mol:1 mol), despite 48 % cis-β-carotene [(Z)-β-carotene] composition in cassava. In Expt 2, cassava feed with 4·3 nmol provitamin A/g maintained vitamin A status. No effect of cassava variety was observed. Serum retinol concentrations did not differ. β-Carotene was detected in livers of gerbils receiving cassava and supplements, but the cis-to-trans ratio in liver differed from intake. Biofortified cassava adequately maintained vitamin A status and was as efficacious as β-carotene supplementation in the gerbil model.


2000 ◽  
Vol 83 (5) ◽  
pp. 513-520 ◽  
Author(s):  
Suzanne M. Filteau ◽  
Juana F. Willumsen ◽  
Keith Sullivan ◽  
Karin Simmank ◽  
Mary Gamble

The ratio plasma retinol-binding protein (RBP) : transthyretin (TTR) has been proposed as a means to improve the assessment of vitamin A status of individuals with concurrent infection or inflammation. We have measured RBP and TTR in stored sera from South African children who had accidentally ingested kerosene. Samples were collected from these children in hospital when suffering acute inflammation and respiratory distress, and from them and neighbourhood control children 3 months later. Vitamin A status was defined by modified relative dose response (MRDR) tests of liver retinol stores at 3 months and by serum retinol concentration both when children were ill and when they were well. Illness was defined as either being in hospital or, at follow-up, as having a raised plasma α1-acid glycoprotein (AGP) level. The RBP : TTR value was significantly decreased by both illness and low liver retinol stores. When the effects on RBP : TTR of illness and vitamin A stores were considered together for the 3-month follow-up samples, only vitamin A status significantly decreased the value. We calculated sensitivity and specificity of the RBP : TTR ratio against established measures of vitamin A status using a cut-off value of 0·3 for RBP : TTR and standard cut-off values for MRDR (0·06) and plasma retinol (0·7 μmol/l). Compared with MRDR, RBP : TTR had sensitivities of 76 % and 43 % and specificities of 22 % and 81 % to detect vitamin A deficiency in hospitalized and well children respectively. Compared with plasma retinol, sensitivities were 88 % and 44 % and specificities were 55 % and 64 % in hospitalized and well children respectively. Only for the case of clinically well children with biochemical evidence of subclinical inflammation did sensitivity (62 % and 100 % against MRDR and plasma retinol respectively) and specificity (100 % and 60 % against MRDR and retinol) approach useful levels for an assessment tool. Overall, although a trend supporting the theory behind the use of the RBP : TTR for assessment of vitamin A status in infection was observed in the current study, the ratio did not provide adequate sensitivity and specificity to be a useful assessment tool.


2008 ◽  
Vol 11 (7) ◽  
pp. 720-728 ◽  
Author(s):  
Andrew Seal ◽  
Emmanuel Kafwembe ◽  
Ismail AR Kassim ◽  
Mei Hong ◽  
Annie Wesley ◽  
...  

AbstractObjectiveTo assess changes in the Fe and vitamin A status of the population of Nangweshi refugee camp associated with the introduction of maize meal fortification.DesignPre- and post-intervention study using a longitudinal cohort.SettingNangweshi refugee camp, Zambia.SubjectsTwo hundred and twelve adolescents (10–19 years), 157 children (6–59 months) and 118 women (20–49 years) were selected at random by household survey in July 2003 and followed up after 12 months.ResultsMaize grain was milled and fortified in two custom-designed mills installed at a central location in the camp and a daily ration of 400 g per person was distributed twice monthly to households as part of the routine food aid ration. During the intervention period mean Hb increased in children (0·87 g/dl;P< 0·001) and adolescents (0·24 g/dl;P= 0·043) but did not increase in women. Anaemia decreased in children by 23·4 % (P< 0·001) but there was no significant change in adolescents or women. Serum transferrin receptor (log10-transformed) decreased by −0·082 μg/ml (P= 0·036) indicating an improvement in the Fe status of adolescents but there was no significant decrease in the prevalence of deficiency (−8·5 %;P= 0·079). In adolescents, serum retinol increased by 0·16 μmol/l (P< 0·001) and vitamin A deficiency decreased by 26·1 % (P< 0·001).ConclusionsThe introduction of fortified maize meal led to a decrease in anaemia in children and a decrease in vitamin A deficiency in adolescents. Centralised, camp-level milling and fortification of maize meal is a feasible and pertinent intervention in food aid operations.


2003 ◽  
Vol 6 (3) ◽  
pp. 233-240 ◽  
Author(s):  
JF Schémann ◽  
A Banou ◽  
D Malvy ◽  
A Guindo ◽  
L Traore ◽  
...  

AbstractObjective:The impact on vitamin A status of the distribution of vitamin A during national immunisation days (NIDs) has not been well established despite strong promotion by international agencies and donors. Using a pre–post design, the change in prevalence of vitamin A deficiency was examined in pre-school children in Mali.Design:Two cross-sectional surveys were conducted in Mopti region, the first in March 1997 before this strategy was adopted and the second in March 1999, four-and-a-half months after a mass distribution of vitamin A during NIDs.Subjects and setting:We compared the vitamin A status of children aged 12 to 66 months targeted in 1999 by NIDs with the status of children in the same age group in 1997. Infectious events of the previous two weeks were concurrently recorded. Within the 1999 sample, the status of recipient and non-recipient children was also compared.Results:In 1997, the prevalence of xerophthalmia (defined by the presence of night blindness and/or Bitot spots) was 6.9% (95% confidence interval (CI) 5.1–9.2) and the modified retinol dose response (MRDR) test proved abnormal in 77.8% of 12–66-month-old children (95% CI 68.27–85.17). In 1999 this picture had improved significantly, both for xerophthalmia prevalence, 3.3% (95% CI 2.1–5.2), and abnormal MRDR test response, 63.1% (95% CI 54.25–71.23). The infectious morbidity rates between 1997 and 1999 tended to decrease. No significant improvement was found among children older than those targeted by NIDs. In 1999, children who received vitamin A had a lower risk for xerophthalmia (3.0% for recipients vs. 8.7% for non-recipients) and experienced fewer infectious events.Conclusions:The clinical and biological vitamin A status of pre-school children improved between 1997 and 1999. Mass distribution of vitamin A appears to reduce the occurrence of xerophthalmia and would seem to be associated with a decrease in other related illnesses. Vitamin A supplementation during NIDs should be given a high priority when vitamin A deficiency remains a public health problem.


1999 ◽  
Vol 2 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Faruk Ahmed

AbstractObjective:This article provides a comprehensive review of the change in vitamin A status and the extent of vitamin A deficiency among different population groups in Bangladesh up to the present time. The result of experience with different strategies and interventions designed to improve vitamin A status are then reviewed, leading to a discussion of key options for action, as well as important areas for research and evaluation.Design and setting:All the available data have been examined in detail, including data from nationally representative samples and nationwide surveys, as well as small studies in different population groups. Reports on the effectiveness of different intervention programmes have been used.Results:Over the past three decades a number of studies, which include national nutrition surveys, have been carried out to investigate the prevalence of vitamin A deficiency among different population groups in Bangladesh, and they have demonstrated a significant public health problem. Studies have shown that the prevalence of severe deficiency, based on the prevalence of night blindness in preschool children, decreased from 3.6% in 1982–83 to 1.78% in 1989 and 0.6% in 1996. However, there is still a high prevalence of subclinical vitamin A deficiency, based on the biochemical assessment of serum retinol levels in preschool children, estimated mainly from hospital-based groups. Night blindness and Bitot's spot are also found to exist among school-age children and adolescents. Recent reports indicate that night blindness among rural mothers is as high as 1.4%. Only a limited number of studies, with small sample sizes, are available where serum retinol has been reported for school-age children, adolescents and pregnant women. Nevertheless, these studies confirm the presence of low levels of serum retinol and hence, the existence of subclinical vitamin A deficiency. Furthermore, the dietary intake of vitamin A in each population group has been found to be less than the Recommended Daily Allowance (RDA), indicating a significant risk of deficient intakes of vitamin A.To address the problem of vitamin A deficiency, the government of Bangladesh started the Nutritional Blindness Programme in 1973. The main activities of the programme include vitamin A capsule (VAC) supplementation to children of 6 months to 6 years old, nutrition education to increase the production and consumption of vitamin A rich foods, and training of primary health-care workers on the clinical diagnosis and treatment of vitamin A deficiency, VAC distribution and nutrition education. Since 1988, as a long-term strategy, Helen Keller International has been implementing community home gardening promotion projects. To date, the possibility that foods may be fortified with vitamin A, has not been explored as a possible approach in Bangladesh.Conclusion:Although short- to long-term prevention and control programmes are to some extent in place, to improve the situation of vitamin A deficiency, Bangladesh needs a more appropriate mix of interventions for the entire population. More operational research and evaluation are needed if a fully effective programme to alleviate the problem of vitamin A deficiency is to be developed. Finally, to achieve the goal of virtual elimination of vitamin A deficiency will require an integrated approach which brings together appropriate actions at every level, within and across the many sectors of society.


2015 ◽  
Vol 18 (14) ◽  
pp. 2511-2522 ◽  
Author(s):  
Sandjaja ◽  
Idrus Jus’at ◽  
Abas B Jahari ◽  
Ifrad ◽  
Min Kyaw Htet ◽  
...  

AbstractObjectiveTo assess oil consumption, vitamin A intake and retinol status before and a year after the fortification of unbranded palm oil with retinyl palmitate.DesignPre–post evaluation between two surveys.SettingTwenty-four villages in West Java.SubjectsPoor households were randomly sampled. Serum retinol (adjusted for subclinical infection) was analysed in cross-sectional samples of lactating mothers (baselinen324/endlinen349), their infants aged 6–11 months (n318/n335) and children aged 12–59 months (n469/477), and cohorts of children aged 5–9 years (n186) and women aged 15–29 years (n171), alongside food and oil consumption from dietary recall.ResultsFortified oil improved vitamin A intakes, contributing on average 26 %, 40 %, 38 %, 29 % and 35 % of the daily Recommended Nutrient Intake for children aged 12–23 months, 24–59 months, 5–9 years, lactating and non-lactating women, respectively. Serum retinol was 2–19 % higher at endline than baseline (P<0·001 in infants aged 6–11 months, children aged 5–9 years, lactating and non-lactating women; non-significant in children aged 12–23 months;P=0·057 in children aged 24–59 months). Retinol in breast milk averaged 20·5 μg/dl at baseline and 32·5 μg/dl at endline (P<0·01). Deficiency prevalence (serum retinol <20 μg/dl) was 6·5–18 % across groups at baseline, and 0·6–6 % at endline (P≤0·011). In multivariate regressions adjusting for socio-economic differences, vitamin A intake from fortified oil predicted improved retinol status for children aged 6–59 months (P=0·003) and 5–9 years (P=0·03).ConclusionsAlthough this evaluation without a comparison group cannot prove causality, retinyl contents in oil, Recommended Nutrient Intake contributions and relationships between vitamin intake and serum retinol provide strong plausibility of oil fortification impacting vitamin A status in Indonesian women and children.


2015 ◽  
Vol 145 (5) ◽  
pp. 847-854 ◽  
Author(s):  
Bryan M Gannon ◽  
Sherry A Tanumihardjo

Abstract Vitamin A plays an essential role in animal biology and has negative effects associated with both hypo- and hypervitaminosis A. Many notable interventions are being done globally to eliminate vitamin A deficiency, including supplementation, fortification, and biofortification. At the same time, it is important to monitor vitamin A status in nations where preformed vitamin A intake is high because of consumption of animal source foods (e.g., liver, dairy, eggs), fortified foods (e.g., milk, cereals, oil, sugar, margarine), or vitamin supplements (e.g., one-a-day multivitamins) to ensure the population does not reach hypervitaminosis A. To accurately assess population status and evaluate interventions aimed at improving vitamin A status, accurate assessment methods are needed. The primary storage site of vitamin A is the liver; however, routinely obtaining liver samples from humans is impractical and unethical. Isotope dilution using deuterium- or 13C-labeled retinol is currently the most sensitive indirect biomarker of vitamin A status across a wide range of liver reserves. The major drawback to its application is the increased technicality in sample analysis and data calculations when compared to less sensitive methodology, such as serum retinol concentrations and dose response tests. Two main equations have emerged for calculating vitamin A body pool size or liver concentrations from isotope dilution data: the “Olson equation” and the “mass balance equation.” Different applications of these equations can lead to confusion and lack of consistency if the underlying principles and assumptions used are not clarified. The purpose of this focused review is to describe the evolution of the equations used in retinol stable-isotope work and the assumptions appropriate to different applications of the test. Ultimately, the 2 main equations are shown to be fundamentally the same and differ only in assumptions made for each specific research application.


Sign in / Sign up

Export Citation Format

Share Document