Effects of rapeseed-meal and fish-meal supplementation of maize silage-based diets upon voluntary intake, live-weight gain and wool growth of store lambs

1994 ◽  
Vol 58 (1) ◽  
pp. 49-56 ◽  
Author(s):  
M. A. Kossaibati ◽  
M. J. Bryant

AbstractThirty-six individually penned lambs (mean live weight 32·4 (s.d. 2·27) kg) were offered maize silagead libitumand one of three concentrate mixes, two of which contained extracted rapeseed meal (control and HR) and the other fish meal (FM). The concentrates were given according to live weight and in sufficient quantities to provide proportionately about 0·4 of the dry matter (DM) intake of the lambs. The dietary concentrations of nitrogen (N) g/kg DM were 22·4, 27·4 and 27·5 and of rumen undegradable N 6·6, 7·3 and 11·6 for the control, HR and FM diets respectively.Both the HR and FM diets depressed maize silage intakes compared with the control during the first 21 days (P < 0·05) and lambs given the FM diet continued to have lower intakes than control lambs (P < 0·05) throughout the experiment. The live-weight gain of HR lambs was considerably depressed in comparison with the control and FM lambs during the first 21 days of the experiment (P < 0·05). Overall HR lambs gained weight more slowly than control and FM lambs up to 45 kg live weight but the difference was not statistically significant. Food conversion ratio was better for FM than HR (P < 0·01). There were no treatment differences in wool growth.The results obtained provide little evidence that fish meal had any beneficial effects upon lamb growth compared with the control diet except a possible increase in the efficiency of metabolizable energy utilization.

1985 ◽  
Vol 40 (1) ◽  
pp. 111-121 ◽  
Author(s):  
K. Yilala ◽  
M. J. Bryant

ABSTRACTTwo experiments are described in which individually-penned Suffolk × (Blue-faced Leicester × Swaledale) lambs were given complete diets based on grass silage, and voluntary intake, live-weight gain and nitrogen (N) retention were measured.Experiment 1 investigated the effects of supplements of fish meal (0, 60 and 120 g/kg diet dry matter (DM)) and barley (0, 150 and 300 g/kg diet DM) in a 3 × 3 design using 72 lambs. The lambs averaged 35 kg live weight at the start of the 47-day experiment. Fish-meal supplements increased daily intakes of diet DM, silage DM and metabolizable energy (ME), and improved daily gains, carcass weights and N retention. Barley supplements increased daily intakes of diet DM and ME, but reduced silage DM intake; live-weight gain, carcass weight and N retention were all improved.Experiment 2 investigated the effects of supplements of rapeseed meal (0 and 120 g/kg diet DM) in two forms (untreated and formaldehyde-treated) and barley (0 and 150 g/kg diet DM) in a 2 × 2 × 2 design with two missing treatments and using 48 lambs. The lambs averaged 39 kg live weight at the start of the 42-day experiment. Rapeseed meal supplements increased daily intakes of diet DM, silage DM and ME, and improved daily gains, carcass weights and N retention. Form of rapeseed meal had no effect. Barley increased diet DM and ME intakes and improved daily gains and carcass weights.


1991 ◽  
Vol 52 (2) ◽  
pp. 395-399 ◽  
Author(s):  
P. V. Tan ◽  
M. J. Bryant

ABSTRACTLive-weight gain responses were investigated using 36 individually penned lambs (mean live weight 35·2 kg) given three sodium hydroxide treated straw-based diets: low-protein, low-rapeseed meal (control) diet; high protein, high-rapeseed meal (HR) diet; or high-protein, fish meal (FM) diet. The diets were formulated to provide 3 or 9 g undegradable nitrogen per kg dry matter (DM) respectively for the diets without or with fish meal. Diets were offered once a day in a 50: 50 forage-to-concentrate ratio in amounts calculated to support maintenance plus 150 g gain and were adjusted weekly according to live weight. Live-weight gain, measured for 7 weeks, was improved by the FM diet only (P < 0·05).The three diets were given also to rumen-fistulated sheep. The FM diet maintained higher rumen ammonia concentrations during most of the day. The FM and HR diets reduced rumen solid particle outflow rate (P < 0·05) and increased the effective degradability of DM and acid-detergent fibre.


1994 ◽  
Vol 58 (1) ◽  
pp. 57-63 ◽  
Author(s):  
M. A. Kossaibati ◽  
M. J. Bryant

AbstractThirty-six individually penned lambs (mean live weight 32·4 (s.d. 2·27) kg) were offered maize silage ad libitum and one of three concentrate mixes, two of which contained extracted rapeseed meal (control and HR) and the other fish meal (FM). The concentrates were given according to live weight and in sufficient quantities to provide proportionately about 0·4 of the dry matter (DM) intake of the lambs. The dietary concentrations of the nitrogen (N) g/kg DM were 22·4, 27·4 and 27·5 and of the rumen undegradable N 6·6, 7·3 and 11·6 for the control, HR and FM diets, respectively. All lambs were slaughtered at 45 kg live weight and chemical composition of the empty body and some of the component parts determined. A further 12 lambs were slaughtered at the beginning of the experiment to establish body composition before the dietary treatments were imposed.The HR lambs had lower fleece.free empty body (FFEB) gains than either control or FM lambs (P < 0·05). This reduced gain of HR lambs was particularly associated with a reduction in fat deposition (P < 0·01) such that the FFEBs contained less fat than control and FM lambs (P < 0·01). The efficiency of conversion of metabolizable energy for growth (kg) was worse than both the control (P < 0·01) and the FM (P < 0·001) diets. The FFEBs of HR lambs also contained more ash (P < 0·05) than the lambs receiving the other diets.The FM diet was associated with greater gains of fat and energy in the guts compared with the control diet (P < 0·05) and FM lambs had a better kg, value than control lambs (P < 0·05). There was no evidence that FM lambs had better N retention than lambs on the other two treatments.


1980 ◽  
Vol 31 (3) ◽  
pp. 243-250 ◽  
Author(s):  
K. Aston ◽  
J. C. Tayler

ABSTRACT1. Experiment 1. Six treatment groups of one British Friesian and four South Devon × British Friesian bulls, initially 432 kg mean live weight and aged 491 days, were offered individually maize or grass silage ad libitum plus 0, 5 or 10g barley dry matter per kg live weight daily for 80 days. The silages had similar digestible dry matter and estimated metabolizable energy contents but the grass silage contained more ammonia and acetic, propionic and butyric acids. Mean values for groups receiving respectively maize and grass silage diets were for dry-matter intake 17·7, 20·3, 20·4 and 13·0, 16·6, 18·7 g/kg live weight and for live-weight gain 1·00, 1·32, 1·46 and 0·65, 0·98, 1·22kg/day. Significantly more maize than grass silage dry matter was eaten when the silages were given alone and dry-matter intakes, live-weight and carcass gains were greater for maize silage diets. Dry-matter intake, live-weight and carcass gains, efficiency of feed use and carcass quality significantly improved when barley was given.2. Experiment 2. Six groups of five British Friesian bulls, initially 418 kg mean live weight and aged 474 days, were offered individually maize silage ad libitum with either urea or one of two quantities of aqueous ammonia mixed in at the time of feeding, plus 0 or 5 g barley dry matter per kg live weight daily for 90 days. The urea and ammonia-treated silages contained 125, 124 and 148 g crude protein per kg dry matter respectively, with pH values of 3·8, 3·9 and 4·3, and when given alone or with barley mean daily intakes (g dry matter per kg live weight) were 17·1, 18·6 for urea-treated silage diets, and 17·8, 18·8 and 16·9, 19·1 respectively for ammoniatreated silage diets. Live-weight gains were 0·69, 0·94, 0·63, 1·09, 0·64 and 1·07 kg/day. Ammonia treatment had no effect on intake or live-weight gain. Live-weight and carcass gains and carcass quality improved when barley was given.3. The maize silage offered in Experiment 1 contained similar metabolizable energy but more starch than that in Experiment 2 and was used more efficiently for live-weight gain.


2001 ◽  
Vol 137 (1) ◽  
pp. 85-96 ◽  
Author(s):  
R. SANDERSON ◽  
M. S. DHANOA ◽  
C. THOMAS ◽  
A. B. McALLAN

Growth and efficiencies of nitrogen and energy utilization for growth by 72 young British Friesian steers (initial live weight (LW) 110 kg) offered a well preserved, formic acid-treated, perennial ryegrass silage with and without supplements of fish meal were examined. Silage was offered either alone or mixed with 50, 100 or 150 g fish meal/kg silage dry matter (DM) and each diet was offered either ad libitum or intakes were restricted to 16, 19 or 22 g dietary DM/kg LW/day. Treatments were imposed over a period of 132 days. Body component weight gains were determined by comparative slaughter.Increasing the level of either feeding or fish meal increased rates of empty body weight gain linearly (P<0·001) and curvilinearly (P<0·05) respectively. Fish-meal supplementation increased rates of ash and crude protein gain (P<0·001) but, in comparison with the curvilinear response to increasing level of feeding (P<0·001), had small linear effects on fat gain (P>0·01). Consequently, in terms of whole body composition, animals given fish meal were leaner than animals offered silage alone. Fish-meal supplementation had no significant effect on the composition of the carcass but increased the concentration of protein in the liver and gastrointestinal tract.The increase in nitrogen intake associated with feeding fish meal resulted in a reduction in the efficiency of nitrogen utilization as level of fish meal increased. Nitrogen intake required for maintenance was estimated to be 1·054 g/kg LW0·75. In spite of marked differences in the composition of the empty body-weight gain, there was no evidence to support an effect of fish meal on the efficiency of metabolizable energy (ME) utilization for growth (kf) which was estimated to be 0·346 on the basis of data scaled by LW0·75. ME intake required for maintenance (MEm) was estimated to be 0·536 and 0·502 MJ/kg LW0·75 for silage alone and the 150 g fish-meal level respectively.


1986 ◽  
Vol 42 (1) ◽  
pp. 73-79 ◽  
Author(s):  
S. A. Hassan ◽  
M. J. Bryant

ABSTRACTThe response of 35-kg store lambs to diets containing increasing rumen-undegradable nitrogen (UDN) concentrations was measured by live-weight gain and nitrogen (N) balance. A range of UDN concentrations from 2·4 to 7·2 g/kg dietary dry matter was achieved by supplementing a basal diet of NaOH-treated barley straw, tapioca, extracted rapeseed meal and minerals with both formaldehyde-treated rapeseed meal and fish meal. Sufficient diet to provide maintenance and a growth rate of 150 g/day was given to the lambs, according to live weight. Increasing levels of UDN promoted a linear increase in live-weight gain and N retention. However, the response to fish meal was greater than that for formaldehyde-treated rapeseed meal. The true digestibility of N of formaldehyde-treated rapeseed meal determined in chickens by ileal analysis was low in comparison to that of untreated rapeseed meal.


1999 ◽  
Vol 81 (3) ◽  
pp. 227-234 ◽  
Author(s):  
M. Kurihara ◽  
T. Magner ◽  
R. A. Hunter ◽  
G. J. McCrabb

The aim of this experiment was to determine CH4production and energy partition for a range of diets fed toBos indicuscattle. Six Brahman cattle were fed on three different diets in a replicated Latin square experiment over three periods. The diets were (1) long-chopped Angleton grass (Dicanthium aristatum) hayad libitum(DM digestibility (DMD) 41 (se 2)%; 4 g N/kg), (2) long-chopped Rhodes grass (Chloris gayana) hayad libitum(DMD 60 (se 1)%; 14 g N/kg) or (3) 2 kg long-chopped lucerne (Medicago sativa) hay/d plus a high-grain diet (ad libitum) (DMD 70 (se 1)%; 31 g N/kg). CH4production was measured using confinement-type respiration chambers. Metabolizable energy intake (MJ/d) of cattle fed on Angleton grass (18·4 (se 2·0)) was lower (P< 0·01) than that for Rhodes grass (54·9 (se 2·1)), which was lower (P< 0·01) than that for the high-grain diet (76·7 (se 5·8)). CH4production (g/d) for cattle fed on Rhodes grass (257 (se 14)) was higher (P< 0·01) than that for cattle fed on both the high-grain diet (160 (se 24)) and Angleton grass (113 (se 16)). CH4conversion rate (MJ CH4produced per 100 MJ gross energy intake) was not significantly different between cattle fed on Angleton (10·4 (se 1·1)) and Rhodes (11·4 (se 0·3)) grass, but was higher (P< 0·01) than for cattle fed on the high-grain diet (6·7 (se 0·7)). CH4production (g/kg live-weight gain) was associated (P< 0·001) with both live-weight gain and feed: gain ratio. We conclude that the relationships between CH4production, energy utilization and live-weight change of cattle fed on tropical forages differ from those of cattle fed on diets based on temperate forages.


1976 ◽  
Vol 23 (2) ◽  
pp. 181-190 ◽  
Author(s):  
J. M. Wilkinson ◽  
Ines M. Penning

SUMMARYThirty-six British Friesian entire male calves were reared from 100 kg live weight (LW) to slaughter at 450 kg LW. They were offered maize silage ad libitum plus supplements of minerals and a protein concentrate or urea in three treatment diets: protein concentrate (P), urea (U) and (P/U) in which protein and urea each provided 50% of the supplementary N up to 200 kg LW followed by urea alone. Levels of N × 6·25 in the diet dry matter (DM) were 16% from 100 to 200 kg LW, 14% from 200 kg to 300 kg, and 12% thereafter. Barley was given to all the cattle over 12 mo of age at 1% of LW daily.Live-weight gain in the 280-day period prior to the introduction of barley averaged 899, 684 and 580 (±31·0) g/day for P, P/U and U, respectively, and was greater for P than for the other two treatments (P<0·05). After the introduction of barley, gains were similar between treatments, averaging 1275, 1333 and 1270 (±43·2) g/day, resulting in mean ages at slaughter of 15, 16·5 and 17 mo for P, P/U and U, respectively.Substitution of protein concentrate by urea was reflected in a reduced content of metabolizable energy (ME) in the diet and a reduced intake of DM and ME in period 1. Although the contents of ME in the diets were similar in period 2, when barley was given to the cattle, there was little evidence of compensatory growth in treatment P/U and U compared with treatment P. Live-weight gains predicted from ME intake showed good agreement with actual gains. However, reduced intakes and gains by treatments P/U and U compared with treatment P meant that the target weight and age at slaughter of 450 kg and 15 mo of age was met only by treatment P. For the complete system the cattle consumed an average of 2·3 t DM per head of which maize silage DM comprised 78%. Efficiency of feed use averaged 15·5 kg live-weight gain per 100 kg total DM eaten.


1983 ◽  
Vol 100 (3) ◽  
pp. 717-722
Author(s):  
J. B. Moran

SUMMARYIndonesian Ongole and swamp buffalo bulls that had previously been given 0, 1·2, 2·4, 3·6 or 4·8 kg/head/day rice bran plus ad libitum elephant grass were slaughtered after 161 days feeding. Abdominal depot fat, full and empty reticulo-rumen and cold carcass weights were recorded. Various carcass variables were measured and the 9–10–11 rib joints were dissected into bone, muscle and fat. Carcass gross energy was calculated from rib-fat content using previously determined regression equations. Feed efficiency was expressed in terms of the ratios of live-weight gain or carcass-energy accretion to metabolizable energy available for growth.Increasing supplementation with rice bran resulted in larger abdominal fat depots, higher dressing percentages, increased carcass fatness (and hence carcass gross energy) and improved rib muscle to bone ratios. Carcass conformation was unaffected by dietary treatment. When feed efficiency was expressed per unit live-weight gain, there was a decrease with increasing rice-bran feeding. Feed efficiency, expressed per unit of carcass energy accretion, improved with rice-bran supplementation and was generally higher in buffalo than in Ongole bulls. Dietary and species differences in feed efficiency could be primarily explained by the differential energy cost of deposition of, and the availability of energy from, carcass protein and lipid.


1975 ◽  
Vol 84 (2) ◽  
pp. 353-364 ◽  
Author(s):  
C. Thomas ◽  
J. M. Wilkinson ◽  
J. C. Tayler

SUMMARYFifty-four British Friesian castrated male calves, initially 3, 6 or 9 months of age (107, 180 and 249 kg initial live weight, respectively), were individually fed for 83 days on maize silage (27·9% dry matter (D.M.), 10·7% crude protein in D.M.), offeredad libitum. Silage was offered either alone or supplemented with cobs of dried lucerne (21% of total D.M. intake). Three levels of urea (0, 1 and 2% of silage D.M.) were added to the silage before feeding.Total D.M. intakes averaged 23·0, 23·4 and 21·6 g/kg live weight (LW) for the 3-, 6- and 9-month-old animals, respectively. Addition of urea increased silage intake by 11% in the 6-month-old group but there was little effect in the 3- and 9-month-old groups. Lucerne supplementation reduced silage D.M. intake from 22·0 to 18·4 g/kg LW (P< 0·001) and increased total D.M. intake by 1·4 g/kg LW (P< 0·001).Live-weight gain (LWG) of the cattle fed on silage alone increased (P< 0·001) with increasing age of animal. The main effect of urea was to elevate (P< 0·001) LWG from an average of 0·79 (no urea) to 0·94 kg/head/day (2% urea). However, it appeared that most of this effect was confined to the 6-month-old group. The effect of lucerne on LWG decreased with increasing age of animal (P< 0·001). Inclusion of lucerne in the diet significantly reduced the response to urea (P< 0·05).Feed conversion efficiency (LWG/100 Mcal DE intake) decreased (P< 0·01) with increasing age of animal but increased with urea addition from an average of 4·7 (no urea) to 5·3 kg LWG/100 Meal DE intake (2% urea). The response to lucerne supplementation in terms of efficiency was greatest in the 3-month-old group and thereafter declined markedly with increasing age of animal.The results of this experiment indicated that cattle older than 6 months of age (180 kg LW) could achieve a rate of growth of 1·0 kg/head/day on maize silage supplemented solely with urea, but that younger animals required supplementary lucerne to support a high rate of live-weight gain.


Sign in / Sign up

Export Citation Format

Share Document