scholarly journals Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men

2017 ◽  
Vol 117 (9) ◽  
pp. 1312-1322 ◽  
Author(s):  
Kathryn J. Burton ◽  
Marta Rosikiewicz ◽  
Grégory Pimentel ◽  
Ueli Bütikofer ◽  
Ueli von Ah ◽  
...  

AbstractProbiotic yogurt and milk supplemented with probiotics have been investigated for their role in ‘low-grade’ inflammation but evidence for their efficacy is inconclusive. This study explores the impact of probiotic yogurt on metabolic and inflammatory biomarkers, with a parallel study of gut microbiota dynamics. The randomised cross-over study was conducted in fourteen healthy, young men to test probiotic yogurt compared with milk acidified with 2 % d-(+)-glucono-δ-lactone during a 2-week intervention (400 g/d). Fasting assessments, a high-fat meal test (HFM) and microbiota analyses were used to assess the intervention effects. Baseline assessments for the HFM were carried out after a run-in during which normal milk was provided. No significant differences in the inflammatory response to the HFM were observed after probiotic yogurt compared with acidified milk intake; however, both products were associated with significant reductions in the inflammatory response to the HFM compared with the baseline tests (assessed by IL6, TNFα and chemokine ligand 5) (P<0·001). These observations were accompanied by significant changes in microbiota taxa, including decreased abundance of Bilophila wadsworthia after acidified milk (log 2-fold-change (FC)=–1·5, Padj=0·05) and probiotic yogurt intake (FC=–1·3, Padj=0·03), increased abundance of Bifidobacterium species after acidified milk intake (FC=1·4, Padj=0·04) and detection of Lactobacillus delbrueckii spp. bulgaricus (FC=7·0, Padj<0·01) and Streptococcus salivarius spp. thermophilus (FC=6·0, Padj<0·01) after probiotic yogurt intake. Probiotic yogurt and acidified milk similarly reduce postprandial inflammation that is associated with a HFM while inducing distinct changes in the gut microbiota of healthy men. These observations could be relevant for dietary treatments that target ‘low-grade’ inflammation.

Author(s):  
Emanuele Rinninella ◽  
Maria Cristina Mele ◽  
Nicolò Merendino ◽  
Marco Cintoni ◽  
Gaia Anselmi ◽  
...  

Age-related macular degeneration (AMD) is a complex multifactorial disease and the primary cause of legal and irreversible blindness among individuals aged &gt;=65 years in developed countries. Globally, it affects 30-50 million individuals, with an estimated increase of approximately 200 million by 2020 and approximately 300 million by 2040. Currently, the neovascular form may be able to be treated with the use of anti-VEGF drugs, while no effective treatments are available for the dry form. Many observational studies, such as AREDS-1 and AREDS 2, have shown a potential role of micronutrient supplementation in lowering the risk of progression of the early stages of AMD. Recently, low-grade inflammation, sustained by dysbiosis and a leaky gut, has been shown to contribute to the development of AMD. Given the ascertained influence of the gut microbiota in systemic low-grade inflammation and its potential modulation by macro- and micro-nutrients, a potential role of diet in AMD has been proposed. This review discusses the role of the gut microbiota in the development of AMD. Using PubMed, Web of Science and Scopus, we searched for recent scientific evidence discussing the impact of dietary habits (high fat and high glucose or fructose diets), micronutrients (vitamins C, E, and D, zinc, beta-carotene, lutein and zeaxanthin) and omega-3 fatty acids on the modulation of the gut microbiota and their relationship with AMD risk and progression.


2021 ◽  
Vol 135 (24) ◽  
pp. 2729-2748
Author(s):  
Nikita Lad ◽  
Alice M. Murphy ◽  
Cristina Parenti ◽  
Carl P. Nelson ◽  
Neil C. Williams ◽  
...  

Abstract Low-grade inflammation is often an underlying cause of several chronic diseases such as asthma, obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Defining the mediators of such chronic low-grade inflammation often appears dependent on which disease is being investigated. However, downstream systemic inflammatory cytokine responses in these diseases often overlap, noting there is no doubt more than one factor at play to heighten the inflammatory response. Furthermore, it is increasingly believed that diet and an altered gut microbiota may play an important role in the pathology of such diverse diseases. More specifically, the inflammatory mediator endotoxin, which is a complex lipopolysaccharide (LPS) derived from the outer membrane cell wall of Gram-negative bacteria and is abundant within the gut microbiota, and may play a direct role alongside inhaled allergens in eliciting an inflammatory response in asthma. Endotoxin has immunogenic effects and is sufficiently microscopic to traverse the gut mucosa and enter the systemic circulation to act as a mediator of chronic low-grade inflammation in disease. Whilst the role of endotoxin has been considered in conditions of obesity, cardiovascular disease and T2DM, endotoxin as an inflammatory trigger in asthma is less well understood. This review has sought to examine the current evidence for the role of endotoxin in asthma, and whether the gut microbiota could be a dietary target to improve disease management. This may expand our understanding of endotoxin as a mediator of further low-grade inflammatory diseases, and how endotoxin may represent yet another insult to add to injury.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1792
Author(s):  
Alicia Huazano-García ◽  
María Blanca Silva-Adame ◽  
Juan Vázquez-Martínez ◽  
Argel Gastelum-Arellanez ◽  
Lino Sánchez-Segura ◽  
...  

Highly branched neo-fructans (agavins) are natural prebiotics found in Agave plants, with a large capacity to mitigate the development of obesity and metabolic syndrome. Here, we investigated the impact of agavins intake on gut microbiota modulation and their metabolites as well as their effect on metabolic endotoxemia and low-grade inflammation in mice fed high-fat diet. Mice were fed with a standard diet (ST) and high-fat diet (HF) alone or plus an agavins supplement (HF+A) for ten weeks. Gut microbiota composition, fecal metabolite profiles, lipopolysaccharides (LPS), pro-inflammatory cytokines, and systemic effects were analyzed. Agavins intake induced substantial changes in gut microbiota composition, enriching Bacteroides, Parabacteroides, Prevotella, Allobaculum, and Akkermansia genus (LDA > 3.0). l-leucine, l-valine, uracil, thymine, and some fatty acids were identified as possible biomarkers for this prebiotic supplement. As novel findings, agavins supplementation significantly decreased LPS and pro-inflammatory (IL-1α, IL-1β, and TNF-α; p < 0.05) cytokines levels in portal vein. In addition, lipid droplets content in the liver and adipocytes size also decreased with agavins consumption. In conclusion, agavins supplementation mitigate metabolic endotoxemia and low-grade inflammation in association with gut microbiota regulation and their metabolic products, thus inducing beneficial responses on metabolic disorders in high-fat diet-fed mice.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1677 ◽  
Author(s):  
Emanuele Rinninella ◽  
Maria Mele ◽  
Nicolò Merendino ◽  
Marco Cintoni ◽  
Gaia Anselmi ◽  
...  

Age-related macular degeneration (AMD) is a complex multifactorial disease and the primary cause of legal and irreversible blindness among individuals aged ≥65 years in developed countries. Globally, it affects 30–50 million individuals, with an estimated increase of approximately 200 million by 2020 and approximately 300 million by 2040. Currently, the neovascular form may be able to be treated with the use of anti-VEGF drugs, while no effective treatments are available for the dry form. Many studies, such as the randomized controlled trials (RCTs) Age-Related Eye Disease Study (AREDS) and AREDS 2, have shown a potential role of micronutrient supplementation in lowering the risk of progression of the early stages of AMD. Recently, low-grade inflammation, sustained by dysbiosis and a leaky gut, has been shown to contribute to the development of AMD. Given the ascertained influence of the gut microbiota in systemic low-grade inflammation and its potential modulation by macro- and micro-nutrients, a potential role of diet in AMD has been proposed. This review discusses the role of the gut microbiota in the development of AMD. Using PubMed, Web of Science and Scopus, we searched for recent scientific evidence discussing the impact of dietary habits (high-fat and high-glucose or -fructose diets), micronutrients (vitamins C, E, and D, zinc, beta-carotene, lutein and zeaxanthin) and omega-3 fatty acids on the modulation of the gut microbiota and their relationship with AMD risk and progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Johanna Rohrhofer ◽  
Benjamin Zwirzitz ◽  
Evelyne Selberherr ◽  
Eva Untersmayr

The large surfaces of gastrointestinal (GI) organs are well adapted to their diverse tasks of selective nutritional uptake and defense against the external environment. To maintain a functional balance, a vast number of immune cells is located within the mucosa. A strictly regulated immune response is required to impede constant inflammation and to maintain barrier function. An increasing prevalence of GI diseases has been reported in Western societies over the past decades. This surge in GI disorders has been linked to dietary changes followed by an imbalance of the gut microbiome, leading to a chronic, low grade inflammation of the gut epithelium. To counteract the increasing health care costs associated with diseases, it is paramount to understand the mechanisms driving immuno-nutrition, the associations between nutritional compounds, the commensal gut microbiota, and the host immune response. Dietary compounds such as lipids, play a central role in GI barrier function. Bioactive sphingolipids (SLs), e.g. sphingomyelin (SM), sphingosine (Sph), ceramide (Cer), sphingosine-1- phosphate (S1P) and ceramide-1-phosphate (C1P) may derive from dietary SLs ingested through the diet. They are not only integral components of cell membranes, they additionally modulate cell trafficking and are precursors for mediators and second messenger molecules. By regulating intracellular calcium levels, cell motility, cell proliferation and apoptosis, SL metabolites have been described to influence GI immune homeostasis positively and detrimentally. Furthermore, dietary SLs are suggested to induce a shift in the gut microbiota. Modes of action range from competing with the commensal bacteria for intestinal cell attachment to prevention from pathogen invasion by regulating innate and immediate defense mechanisms. SL metabolites can also be produced by gut microorganisms, directly impacting host metabolic pathways. This review aims to summarize recent findings on SL signaling and functional variations of dietary SLs. We highlight novel insights in SL homeostasis and SL impact on GI barrier function, which is directly linked to changes of the intestinal microbiota. Knowledge gaps in current literature will be discussed to address questions relevant for understanding the pivotal role of dietary SLs on chronic, low grade inflammation and to define a balanced and healthy diet for disease prevention and treatment.


2021 ◽  
Vol 22 (5) ◽  
pp. 2602
Author(s):  
Emilie Viennois ◽  
Benoit Chassaing

Inflammation is a well-characterized critical driver of gastrointestinal cancers. Previous findings have shown that intestinal low-grade inflammation can be promoted by the consumption of select dietary emulsifiers, ubiquitous component of processed foods which alter the composition and function of the gut microbiota. Using a model of colitis-associated cancer, we previously reported that consumption of the dietary emulsifiers carboxymethylcellulose or polysorbate-80 exacerbated colonic tumor development. Here, we investigate the impact of dietary emulsifiers consumption on cancer initiation and progression in a genetical model of intestinal adenomas. In APCmin mice, we observed that dietary emulsifiers consumption enhanced small-intestine tumor development in a way that appeared to be independent of chronic intestinal inflammation but rather associated with emulsifiers’ impact on the proliferative status of the intestinal epithelium as well as on intestinal microbiota composition in both male and female mice. Overall, our findings further support the hypothesis that emulsifier consumption may be a new modifiable risk factor for colorectal cancer (CRC) and that alterations in host–microbiota interactions can favor gastrointestinal carcinogenesis in individuals with a genetical predisposition to such disorders.


2021 ◽  
Author(s):  
Yang Liu ◽  
Wei Xiao ◽  
Leilei Yu ◽  
Fengwei Tian ◽  
Gang Wang ◽  
...  

Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate...


Physiology ◽  
2012 ◽  
Vol 27 (5) ◽  
pp. 300-307 ◽  
Author(s):  
Rémy Burcelin

The recent epidemic of obesity and diabetes and the diversity at the individual level could be explained by the intestinal microbiota-to-host relationship. More than four million gene products from the microbiome could interact with the immune system to induce a tissue metabolic infection, which is the molecular origin of the low-grade inflammation that characterizes the onset of obesity and diabetes.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Tomonori Akasaka ◽  
Seiji Hokimoto ◽  
Noriaki Tabata ◽  
Kenji Sakamoto ◽  
Kenichi Tsujita ◽  
...  

Background: Several cytochrome P450 (CYP) enzyme families have been identified in extra hepatic tissues such as heart, vasculature, kidney, and lung. CYP2C19 localized in vascular smooth muscle and endothelium contributes to the regulation of vascular tone and homeostasis. However, it is unknown whether CYP2C19 genotype is associated with the vascular tonus in patients with VSA. The aim of this study was to examine the impact of CYP2C19 genotype on coronary artery spasm in patients with VSA. Methods: We examined the distribution of CYP2C19 genotype in patients with VSA (n=129) who were diagnosed by intra-coronary acetylcholine infusion test and healthy subjects (n=455) as control group. CYP2C19 genotypes were divided into 3 groups; (1) CYP2C19*1/*1: EM, (2) one loss-of-function allele (*1/*2, *1/*3: IM), and (3) two loss-of-function alleles (*2/*2, *2/*3, *3/*3: PM). Moreover, we measured the level of high-sensitive CRP (hs-CRP) as a degree of low glade inflammation in each group. Results: The ratios of CYP2C19 genotype (EM, IM, and PM) were 30, 42, and 28% in VSA group, and 32, 49, and 19% in control group. In short, PM frequency was significantly higher in VSA than in control (28% vs 19%, P=0.026). In VSA group, the ratios of CYP2C19 genotype were 36, 44, and 20% in male, and 20, 39, and 41% in female, respectively. Briefly, the PM frequency was significantly higher in female than in male (41% vs 20%, P<0.001). Moreover, the level of hs-CRP was significantly higher in VSA group than in control group (0.17±0.367 vs 0.10.±0.240, P=0.02). When patients were stratified by gender, the level of hs-CRP was significantly higher in VSA group in female (0.11±0.198 vs 0.06±0.105, P=0.031) and male (0.20±0.438 vs 0.12±0.277, P=0.044). Multivariate analysis for coronary spasm indicated high age, hypertension, and high level of hs-CRP as predictive factors among all subjects. PM is a predictive factor for coronary spasm in female group only (OR3.1, 95%RI 1.525-6.317, P=0.002), but not in male (OR0.829, 95%RI 0.453-1.518, P=0.543). Conclusion: The CYP2C19 two loss-of-function alleles (PM) and low grade inflammation may be associated with pathophysiology of coronary artery spasm and the regulation of coronary tonus, especially in female.


2021 ◽  
pp. 110856
Author(s):  
Diana Coutiño-Hernández ◽  
Mónica Sánchez-Tapia ◽  
Francisco Leal-Vega ◽  
Miriam Bobadilla del Valle ◽  
Héctor Ledezma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document