A critical review of procedures for sampling populations of adult mosquitoes

1977 ◽  
Vol 67 (3) ◽  
pp. 343-382 ◽  
Author(s):  
M. W. Service

AbstractA critical review is presented of the many and varied procedures for sampling adult mosquitoes. All sampling methods are subject to bias, but human-bait collections are probably the most reliable single method for detecting and monitoring populations of anthropophilic species. The estimation of realistic man-biting rates, however, remains difficult. The recent advances in computer technology have generated considerable interest in population modelling, with the aim of getting a better insight into the complexities of population dynamics, mosquito control and disease transmission. Although such approaches may be informative, it is stressed that models should be based on meaningful values of the critical parameters and that these are best obtained from field populations. The difficulties of interpreting mosquito collections in both attractant traps, such as animal-baited traps, carbon-dioxide-baited traps and light-traps, and in non-attractant ones, such as Malaise traps, sticky traps, ramp traps, rotary traps, suction traps and vehicle-mounted traps, are described. Suction traps probably provide the least biased catches of aerial populations of mosquitoes, but, if populations as a whole are to be considered, then resting adults also must be adequately sampled, and this may prove difficult. It is emphasised that different trapping techniques usually sample different components of a population, and that the choice of sampling methods depends much on the type and quality of information required. The limitations of using mark-recapture techniques to study adult dispersal and obtain absolute population estimates are discussed, together with the advantages and disadvantages of applying simple and more complex mathematical procedures for analysing recapture data.

2018 ◽  
Vol 29 (3) ◽  
pp. 112-118
Author(s):  
David Byriel ◽  
Birgit Kristensen ◽  
Kristine Klitgaard ◽  
René Bødker

Abstract: European Culex pipiens and Culex torrentium are morphological fairly similar mosquito species with potentially different vector competences for pathogenic viruses. The relative abundance of the two species is therefore important for quantifying the potential for disease transmission in Denmark. Mosquitoes were sampled from 74 different sites in Denmark with CO2 and octenol-baited suction traps. A total of 285 Culex specimens were identified to species using a restriction enzyme assay. Culex pipiens was the dominating species with 220 (77%) specimens caught at 22 different sites, while 65 (23%) specimens were identified as C. torrentium and only caught at 4 sites. The ratio of the two species differed significantly between sites with C. torrentium dominating in just a single location. Both mosquito species were predominantly caught late in the Danish mosquito season, from mid-August and onwards.


2019 ◽  
Vol 57 (3) ◽  
pp. 957-961
Author(s):  
Kyran M Staunton ◽  
Barukh B Rohde ◽  
Michael Townsend ◽  
Jianyi Liu ◽  
Mark Desnoyer ◽  
...  

Abstract Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Fallon Fowler ◽  
Tashiana Wilcox ◽  
Stephanie Orr ◽  
Wes Watson

Abstract Understanding collection methodologies and their limitations are essential when targeting specific arthropods for use in habitat restoration, conservation, laboratory colony formation, or when holistically representing local populations using ecological surveys. For dung beetles, the most popular collection methodology is baited traps, followed by light traps and unbaited flight-intercept traps during diversity surveys. A less common collection method, flotation, is assumed to be laborious and messy, and so only a handful of papers exist on its refinement and strengths. Our purpose was threefold: First, we tested the recovery and survival rates of Labarrus (=Aphodius) pseudolividus (Balthasar) and Onthophagus taurus (Schreber) when floating beetle-seeded dung pats to determine potential collection and safety issues. We collected 72.4 and 78% of the seeded L. pseudolividus and O. taurus, respectively, with >95% survival rating. Second, we developed a flotation-sieving technique that enables users to rapidly collect and passively sort dung beetles with less time and effort. Specifically, we often collected 50–100 g of wild dung beetles within a couple of hours of gathering dung and sorted them in a couple more by allowing dung beetles to sort themselves by size within a series of sieves; Third, we reviewed flotation-based advantages and disadvantages in comparison to other methodologies.


2020 ◽  
Author(s):  
Matthew J. Valentine ◽  
Brenda Ciraola ◽  
Gregory R. Jacobs ◽  
Charlie Arnot ◽  
Patrick J. Kelly ◽  
...  

AbstractBackgroundHigh quality mosquito surveys that collect fine resolution local data on mosquito species’ abundances provide baseline data to help us understand potential host-pathogen-mosquito relationships, accurately predict disease transmission, and target mosquito control efforts in areas at risk of mosquito borne diseases.MethodsAs part of an investigation into arboviral sylvatic cycles on the Caribbean island of St. Kitts, we carried out an island wide mosquito survey from November 2017 to March 2019. Using Biogents Sentinel 2 and miniature CDC light traps that were set monthly and run for 48 hour intervals, we collected mosquitoes from a total of 30 sites distributed across the five common land covers on the island (agricultural, mangrove, rainforest, scrub, and urban). We developed a mixed effects negative binomial regression model to predict the effects of land cover, seasonality, and precipitation on observed counts of the most abundant mosquito species we found.ResultsWe captured 10 of the 14 mosquito species reported on the island, the four most abundant being Aedes taeniorhynchus, Culex quinquefasciatus, Aedes aegpyti, and Deinocerites magnus. Sampling in the mangroves yielded the most mosquitoes, with Ae. taeniorhynchus, Cx. quinquefasciatus, and De. magnus predominating. Aedes aegypti was recovered primarily from urban and agricultural habitats, but also at lower frequency in other land covers. Psorophora pygmaea and Toxorhynchites guadeloupensis were only captured in scrub habitat. Capture rates in rainforests were low. Our models indicated the relative abundance of the four most common species varied seasonally and with land cover. They also suggested that the extent to which monthly average precipitation influenced counts varied according to species.ConclusionsThis study demonstrates there is high seasonality in mosquito abundances and that land cover influenced the distribution and abundance of mosquito species on St. Kitts. Further, human-adapted mosquito species (e.g. Ae. aegypti and Cx. quinquefasciatus) that are known vectors for many human relevant pathogens are the most wide-spread (across land covers) and the least responsive to seasonal variation in precipitation.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 522
Author(s):  
Zhen Li ◽  
Shunqi Mei ◽  
Yajie Dong ◽  
Fenghua She ◽  
Yongzhen Li ◽  
...  

Nanofibrous biomaterials have huge potential for drug delivery, due to their structural features and functions that are similar to the native extracellular matrix (ECM). A wide range of natural and polymeric materials can be employed to produce nanofibrous biomaterials. This review introduces the major natural and synthetic biomaterials for production of nanofibers that are biocompatible and biodegradable. Different technologies and their corresponding advantages and disadvantages for manufacturing nanofibrous biomaterials for drug delivery were also reported. The morphologies and structures of nanofibers can be tailor-designed and processed by carefully selecting suitable biomaterials and fabrication methods, while the functionality of nanofibrous biomaterials can be improved by modifying the surface. The loading and releasing of drug molecules, which play a significant role in the effectiveness of drug delivery, are also surveyed. This review provides insight into the fabrication of functional polymeric nanofibers for drug delivery.


Web Ecology ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 15-23 ◽  
Author(s):  
J. G. Zaller ◽  
G. Kerschbaumer ◽  
R. Rizzoli ◽  
A. Tiefenbacher ◽  
E. Gruber ◽  
...  

Abstract. When monitoring the activity and diversity of arthropods in protected areas it is ethically advisable to use non-destructive methods in order to avoid detrimental effects on natural populations and communities. The aim of this study was to compare the efficiency of three methods for potential use for arthropod monitoring in a protected grassland: pitfall trapping, quadrat sampling and video monitoring. Pitfall trapping was conducted either during the day or over night (cup diameter 6.5 cm, unfenced, without preservation fluid). Quadrat sampling was conducted within a metal frame (width × length × height: 50 × 50 × 30 cm). Video monitoring was done on a 68 × 37 cm area using a digital high-density video camera mounted on a tripod. The study site was located in a semi-dry grassland northwest of Vienna, Austria (305 m a.s.l., 48°27′ E, 16°34′ N); the three methods were replicated five times. Across the sampling methods a total of 24 arthropod orders were observed with Hymenoptera being the most abundant, followed by Diptera and Coleoptera. The sampling methods differed considerably in number of arthropods recorded: video monitoring (2578 individuals) followed by quadrat sampling (202 individuals), nocturnal (43 individuals) and diurnal pitfall trapping (12 individuals). Diversity of arthropod assemblages varied highly significantly among the tested methods with quadrat sampling yielding the highest diversity 0.70 ± 0.22 (Gini–Simpson index, mean ±SD) followed by video monitoring (0.57 ± 0.15), diurnal pitfall sampling (0.35 ± 0.28) and nocturnal pitfall sampling (0.17 ± 0.24). Video surveillance of the pitfall traps showed that out of a total of 151 individuals crawling in the vicinity of pitfall traps none of them were actually trapped. A tabular comparison listing the advantages and disadvantages of the sampling methods is presented. Taken together, our results suggest that video monitoring has a great potential as a supplementary method for quantitative and qualitative assessments of arthropod activity and diversity in grasslands.


2020 ◽  
Vol 202 ◽  
pp. 06012
Author(s):  
Amnan Haris ◽  
Hadiyanto Hadiyanto ◽  
Fuad Muhammad

Microplastic had been contaminating freshwater ecosystem. But, our knowledge to identify kind of microplastics are still limited. Microplastic research methods in both water and sediment are generally divided into several stages: sampling, sample purification and sample identification. Samples can come from water or sediment. This journal provides several microplastic sampling methods to choose from, along with their advantages and disadvantages. Until a pure microplastic sample is obtained.


2019 ◽  
Author(s):  
Chiamaka V. Ukegbu ◽  
Maria Giorgalli ◽  
Sofia Tapanelli ◽  
Luisa D.P. Rona ◽  
Amie Jaye ◽  
...  

AbstractMalaria transmission requires Plasmodium parasites to successfully infect a female Anopheles mosquito, surviving a series of robust innate immune responses. Understanding how parasites evade these responses can highlight new ways to block malaria transmission. We show that ookinete and sporozoite surface protein PIMMS43 is required for Plasmodium ookinete evasion of the Anopheles coluzzii complement-like system and for sporogonic development in the oocyst. Disruption of P. berghei PIMMS43 triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing the complement-like system restores ookinete-to-oocyst transition. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African P. falciparum populations indicates allelic adaptation to sympatric vector populations. These data significantly add to our understanding of mosquito-parasite interactions and identify PIMMS43 as a target of interventions aiming at malaria transmission blocking.Author summaryMalaria is a devastating disease transmitted among humans through mosquito bites. Mosquito control has significantly reduced clinical malaria cases and deaths in the last decades. However, as mosquito resistance to insecticides is becoming widespread impacting on current control tools, such as insecticide impregnated bed nets and indoor spraying, new interventions are urgently needed, especially those that target disease transmission. Here, we characterize a protein found on the surface of malaria parasites, which serves to evade the mosquito immune system ensuring disease transmission. Neutralization of PIMMS43, either by eliminating it from the parasite genome or by pre-incubating parasites with antibodies that bind to the protein, is shown to inhibit mosquito infection by malaria parasites. Differences in PIMMS43 detected between malaria parasite populations sampled across Africa suggest that these populations have adapted for transmission by different mosquito vectors that are also differentially distributed across the continent. We conclude that interventions targeting PIMMS43 could block malaria parasites inside mosquitoes before they can infect humans.


Author(s):  
Mario A. Torres-Acosta ◽  
Héctor M. Castaneda-Aponte ◽  
Liliana M. Mora-Galvez ◽  
Monica R. Gil-Garzon ◽  
Martin P. Banda-Magaña ◽  
...  

Hyaluronic acid (HA) is a biopolymer with a wide range of applications, mainly in the cosmetic and pharmaceutical sectors. Typical industrial-scale production utilizes organisms that generate HA during their developmental cycle, such as Streptococcus equi sub. zooepidemicus. However, a significant disadvantage of using Streptococcus equi sub. zooepidemicus is that it is a zoonotic pathogen, which use at industrial scale can create several risks. This creates opportunities for heterologous, or recombinant, production of HA. At an industrial scale, the recovery and purification of HA follow a series of precipitation and filtration steps. Current recombinant approaches are developing promising alternatives, although their industrial implementation has yet to be adequately assessed. The present study aims to create a theoretical framework to forecast the advantages and disadvantages of endogenous and recombinant strains in production with the same downstream strategy. The analyses included a selection of the best cost-related recombinant and endogenous production strategies, followed by a sensitivity analysis of different production variables in order to identify the three most critical parameters. Then, all variables were analyzed by varying them simultaneously and employing multiple linear regression. Results indicate that, regardless of HA source, production titer, recovery yield and bioreactor scale are the parameters that affect production costs the most. Current results indicate that recombinant production needs to improve current titer at least 2-fold in order to compete with costs of endogenous production. This study serves as a platform to inform decision-making for future developments and improvements in the recombinant production of HA.


Sign in / Sign up

Export Citation Format

Share Document