Investigation of secondary metabolites in bean cultivars and their impact on the nutritional performance of Spodoptera littoralis (Lep.: Noctuidae)

Author(s):  
Parviz Shishehbor ◽  
Seyed Ali Hemmati

Abstract Spodoptera littoralis (Boisd) is globally recognized as a destructive polyphagous insect pest of various crops in the world. It is commonly managed by chemical pesticides, which can cause deleterious effects such as environmental pollution, toxicity to non-target organisms and the emergence of secondary pests. Hence, investigations into alternative pest control strategies such as the use of resistant host plant cultivar against S. littoralis is important. This study aimed to explore the nutritional performance of S. littoralis larvae in dependence on total anthocyanin, flavonoid, and phenol levels across 11 bean cultivars (Phaseolus and Vigna spp.) under laboratory conditions. The results revealed that the Mashhad cultivar accumulated the highest amount of total phenols (13.59 mg ml−1), whereas Yaghout and Arabi cultivars posed the lowest total phenols contents (1.80 and 1.90 mg ml−1, respectively). Across larval instars (third to sixth), the highest consumption index and relative consumption rate were recorded on the Mashhad cultivar. The lowest values of efficiency of conversion of ingested food and the efficiency of conversion of digested food of total larval instars were detected in the larvae which were reared on the Mashhad cultivar. Likewise, the lowest value of the index of plant quality (IPQ) was obtained in the Mashhad cultivar; however, IPQ was figured out at the highest level in the Arabi cultivar. Our findings show that the differential accumulation of secondary metabolites would change the nutritional quality of plants for S. littoralis. Based on the findings, the Mashhad cultivar may serve as a candidate for either integrated pest management or breeding programs aiming at controlling this pest.

2020 ◽  
Vol 24 ◽  
pp. 101524 ◽  
Author(s):  
Ashraf S.A. El-Sayed ◽  
Ahmed H. Moustafa ◽  
Hussein A. Hussein ◽  
Aly A. El-Sheikh ◽  
Samah N. El-Shafey ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 860
Author(s):  
Yi-Chun Lin ◽  
Tian Zhou ◽  
Taojun Wang ◽  
Melba Crawford ◽  
Ayman Habib

Remote sensing platforms have become an effective data acquisition tool for digital agriculture. Imaging sensors onboard unmanned aerial vehicles (UAVs) and tractors are providing unprecedented high-geometric-resolution data for several crop phenotyping activities (e.g., canopy cover estimation, plant localization, and flowering date identification). Among potential products, orthophotos play an important role in agricultural management. Traditional orthophoto generation strategies suffer from several artifacts (e.g., double mapping, excessive pixilation, and seamline distortions). The above problems are more pronounced when dealing with mid- to late-season imagery, which is often used for establishing flowering date (e.g., tassel and panicle detection for maize and sorghum crops, respectively). In response to these challenges, this paper introduces new strategies for generating orthophotos that are conducive to the straightforward detection of tassels and panicles. The orthophoto generation strategies are valid for both frame and push-broom imaging systems. The target function of these strategies is striking a balance between the improved visual appearance of tassels/panicles and their geolocation accuracy. The new strategies are based on generating a smooth digital surface model (DSM) that maintains the geolocation quality along the plant rows while reducing double mapping and pixilation artifacts. Moreover, seamline control strategies are applied to avoid having seamline distortions at locations where the tassels and panicles are expected. The quality of generated orthophotos is evaluated through visual inspection as well as quantitative assessment of the degree of similarity between the generated orthophotos and original images. Several experimental results from both UAV and ground platforms show that the proposed strategies do improve the visual quality of derived orthophotos while maintaining the geolocation accuracy at tassel/panicle locations.


Author(s):  
Lu-Lu Li ◽  
Ji-Wei Xu ◽  
Wei-Chen Yao ◽  
Hui-Hui Yang ◽  
Youssef Dewer ◽  
...  

Abstract The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes–SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242–were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 608
Author(s):  
Fairuz Fatini Mohd Yusof ◽  
Jamilah Syafawati Yaacob ◽  
Normaniza Osman ◽  
Mohd Hafiz Ibrahim ◽  
Wan Abd Al Qadr Imad Wan-Mohtar ◽  
...  

The growing demand for high value aromatic herb Polygonum minus-based products have increased in recent years, for its antioxidant, anticancer, antimicrobial, and anti-inflammatory potentials. Although few reports have indicated the chemical profiles and antioxidative effects of Polygonum minus, no study has been conducted to assess the benefits of micro-environmental manipulation (different shading levels) on the growth, leaf gas exchange and secondary metabolites in Polygonum minus. Therefore, two shading levels (50%:T2 and 70%:T3) and one absolute control (0%:T1) were studied under eight weeks and 16 weeks of exposures on Polygonum minus after two weeks. It was found that P. minus under T2 obtained the highest photosynthesis rate (14.892 µmol CO2 m−2 s−1), followed by T3 = T1. The increase in photosynthesis rate was contributed by the enhancement of the leaf pigments content (chlorophyll a and chlorophyll b). This was shown by the positive significant correlations observed between photosynthesis rate with chlorophyll a (r2 = 0.536; p ≤ 0.05) and chlorophyll b (r2 = 0.540; p ≤ 0.05). As the shading levels and time interval increased, the production of total anthocyanin content (TAC) and antioxidant properties of Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) also increased. The total phenolic content (TPC) and total flavonoid content (TFC) were also significantly enhanced under T2 and T3. The current study suggested that P.minus induce the production of more leaf pigments and secondary metabolites as their special adaptation mechanism under low light condition. Although the biomass was affected under low light, the purpose of conducting the study to boost the bioactive properties in Polygonum minus has been fulfilled by 50% shading under 16 weeks’ exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guilherme B. Dias ◽  
Musaad A. Altammami ◽  
Hamadttu A. F. El-Shafie ◽  
Fahad M. Alhoshani ◽  
Mohamed B. Al-Fageeh ◽  
...  

AbstractThe red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is an economically-important invasive species that attacks multiple species of palm trees around the world. A better understanding of gene content and function in R. ferrugineus has the potential to inform pest control strategies and thereby mitigate economic and biodiversity losses caused by this species. Using 10x Genomics linked-read sequencing, we produced a haplotype-resolved diploid genome assembly for R. ferrugineus from a single heterozygous individual with modest sequencing coverage ($$\sim$$ ∼ 62x). Benchmarking against conserved single-copy Arthropod orthologs suggests both pseudo-haplotypes in our R. ferrugineus genome assembly are highly complete with respect to gene content, and do not suffer from haplotype-induced duplication artifacts present in a recently published hybrid assembly for this species. Annotation of the larger pseudo-haplotype in our assembly provides evidence for 23,413 protein-coding loci in R. ferrugineus, including over 13,000 predicted proteins annotated with Gene Ontology terms and over 6000 loci independently supported by high-quality Iso-Seq transcriptomic data. Our assembly also includes 95% of R. ferrugineus chemosensory, detoxification and neuropeptide-related transcripts identified previously using RNA-seq transcriptomic data, and provides a platform for the molecular analysis of these and other functionally-relevant genes that can help guide management of this widespread insect pest.


2017 ◽  
Vol 108 (5) ◽  
pp. 658-666 ◽  
Author(s):  
X. Lin ◽  
Y. Jiang ◽  
L. Zhang ◽  
Y. Cai

AbstractSpodoptera litura is a widespread polyphagous insect pest that can develop resistance and cross-resistance to insecticides, making it difficult to control. Insecticide exposure has previously been linked with induction of specific olfactory-related proteins, including some chemosensory proteins (CSPs) and odorant-binding proteins (OPBs), which may disrupt detection of environmental factors and reduce fitness. However, functional evidence supporting insecticide and OBPs/CSPs mediation remains unknown. Here we fed male S. litura moths with sucrose water containing one of three insecticides, chlorpyrifos, emamectin benzoate or fipronil, and used real-time quantitative polymerase chain reaction and RNAi to investigate OBPs and CSPs expression and their correlations with survival. Chlorpyrifos and emamectin benzoate increased expression of 78% of OBPs, plus 63 and 56% of CSP genes, respectively, indicating a major impact on these gene families. RNAi knockdown of SlituCSP18, followed by feeding with chlorpyrifos or fipronil, decreased survival rates of male moths significantly compared with controls. Survival rate also decreased significantly with the downregulation of SlituOBP9 followed by feeding with chlorpyrifos. Thus, although these three insecticides had different effects on OBP and CSP gene expression, we hypothesize that SlituOBPs and SlituCSPs might mediate their effects by increasing their expression levels to improve survival. Moreover, the differential response of S. litura male moths to the three insecticides indicated the potential specificity of chlorpyrifos affect SlituCSP18 and SlituOBP9 expression.


2006 ◽  
Vol 61 (5-6) ◽  
pp. 347-350 ◽  
Author(s):  
Rilka M. Taskova ◽  
Holger Zorn ◽  
Ulrich Krings ◽  
Henning Bouws ◽  
Ralf G. Berger

Different techniques were compared for their effectiveness in the disruption of the rigid cell walls of Basidiomycetes. Grinding under liquid nitrogen, stirred glass bead milling and enzymatic cell lysis were applied to the mycelia of Pleurotus sapidus and Lepista irina grown submerged. Each of the disruption procedures was evaluated by testing the quantity and quality of released intracellular metabolites: DNA, RNA, enzymes, and secondary metabolites. The most suitable method for nucleic acid isolation was grinding under liquid nitrogen, while bead mill homogenization was the superior technique for isolation of active enzymes. A new effective method is proposed for isolation of secondary metabolites with the aid of bead milling of fungal mycelia.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-12
Author(s):  
Magdalena Zielińska-Dawidziak

Sprouts are generally accepted as a pro-healthy food. They are consumed as a source of valuable macronutrients, antioxidants, microelements, and vitamins. Changing growth conditions of sprouts enables modification of their nutritional quality, as well as their safety. Thus, in order to achieve the most desirable composition of the produced sprouts, the conditions for their production are optimized. The aim of this review is to present methods currently used to modify the nutritional quality of plant sprouts. Most scientific works focus on stress conditions inducing the synthesis of secondary metabolites, mainly antioxidants. An increase in their content is achieved after application of physical (e.g., light illumination, temperature) or chemical factors (e.g., salinity stress, phytohormones, metal ions, etc). Though the application of these modifications on a larger scale is problematic. These problems include difficulties in predicting the effect of the stressor and an increased price of the obtained sprouts. However, since it is possible to enrich sprouts with valuable health-promoting substances, these methods are still considered very promising.


Sign in / Sign up

Export Citation Format

Share Document