scholarly journals TOPCROSS HYBRIDS AS AN ENTRY INTO COMMERCIAL SEED PRODUCTION OF PEARL MILLET IN EASTERN AFRICA

2005 ◽  
Vol 41 (3) ◽  
pp. 335-356 ◽  
Author(s):  
F. R. BIDINGER ◽  
A. G. BHASKER RAJ ◽  
NEGUSSE ABRAHA ◽  
ADAM MOHAMED ALI ◽  
A. B. OBILANA ◽  
...  

Pearl millet topcross hybrids (inbred male-sterile seed parent × open-pollinated variety restorer) based on locally adapted varieties and publicly available seed parents provide an ideal entry point into the commercial hybrid seed business, which can stimulate commercial investment by prospective seed producers. To demonstrate this potential, fifteen topcross hybrids made with the widely adapted variety ICMV 221 were evaluated in Eritrea, Sudan and Kenya for overall field performance, and in India for mechanisms of expression of heterosis and for terminal drought tolerance. Across all evaluation environments, the mean yield heterosis was 8%, with a range of −1% to +19%; six hybrids had a statistically significant, positive across-environment yield heterosis (ranging from +11% to +19%). Significant grain yield heterosis in rainy season environments was a consequence of heterosis in both biomass and harvest index, but not necessarily in any specific yield component. Positive grain yield heterosis under terminal drought stress, a common occurrence in millet-growing environments, was related to positive heterosis for grain size. These results are discussed in terms of their support for topcross hybrids as an entry point for prospective millet seed producers, and a scheme presented for the rapid creation, evaluation and marketing of locally adapted topcross hybrids.

2008 ◽  
Vol 6 (02) ◽  
pp. 73-78 ◽  
Author(s):  
O. P. Yadav ◽  
F. R. Bidinger

Both stover and grain are important considerations in the adoption of the new pearl millet (Pennisetum glaucum) cultivars in crop–livestock farming system in north-west India. Local landrace germplasm contains many of the traits needed to breed new cultivars, which met such requirements. We evaluated 169 pearl millet landraces to assess their potential for breeding new open-pollinated varieties, and measured heterosis in landrace testcrosses to evaluate their potential for topcross hybrids breeding. There were significant differences among landraces in their total biomass, grain yield and stover yield. A high accumulation of biomass, followed by its efficient partitioning, was crucial in determining grain productivity under arid zone. There was also no trade-off between stover and grain productivity and several landraces outperformed check cultivars in both grain and stover yields. The manifestation of heterosis in the landrace-based topcross hybrids varied for different traits. Significant heterosis for biomass, grain yield and stover yield was observed in specific male-sterile seed parent × landrace-based pollinator combinations. Utilization of landraces in variety development and topcross hybrids breeding programmes targeting north-western India or similar regions are discussed.


2019 ◽  
Vol 70 (5) ◽  
pp. 428 ◽  
Author(s):  
Tina Botwright Acuña ◽  
Richard Richards ◽  
Debra Partington ◽  
Angela Merry ◽  
Brendan Christy ◽  
...  

We tested the hypothesis that lengthening the duration between the terminal spikelet stage of development and anthesis (referred to here as the construction-phase duration, CPD) will increase yield per unit area in wheat (Triticum aestivum L.). Field experiments were undertaken at 17 sites across the high-rainfall zone of south-eastern and Western Australia in 2014 and 2015. In total, 205 wheat genotypes were grown. Genetic material included a set of near-isogenic lines (NILs) varying in photoperiod and vernalisation alleles; commercial wheat cultivars and breeding lines; and lines selected from the Multiparent Advanced Generation Inter Cross population. As such, this is the only comprehensive dataset in which the effect of variation in CPD on grain yield in field plots has been evaluated in diverse field environments. Within an optimum anthesis window of 10 days, longer CPD significantly increased grain yield by >11% at two sites and tended to increase grain yield at another 11 sites (not statistically significant). The average yield increase across these sites was 5.5%. There was no consistent trend whereby a specific yield component was responsible for the increase across sites. We suggest that CPD can be extended by genetic selection and by sacrificing some of the vegetative period without any detriment to grain yield. We also found that CPD is increased by extending the duration from sowing to flowering through earlier sowing, which may be associated with increased yields in some environments. We conclude that, for the same anthesis date, a longer CPD may be beneficial in moderately favourable rainfed environments with a relatively even distribution of rainfall. We explore the basis of these relationships and implications for growers and plant breeders.


1987 ◽  
Vol 38 (1) ◽  
pp. 37 ◽  
Author(s):  
FR Bidinger ◽  
V Mahalakshmi ◽  
GDP Rao

Yield trials of advanced lines of pearl millet were grown under midseason (panicle initiation to flowering) and terminal (flowering to maturity) drought stresses in the dry seasons of 1981, 1982, and 1983. Grain yield and its components were severely reduced by the terminal stress, but were little affected by the midseason drought, as there was compensation by later tillers for yield lost on the earlier shoots. The major factor determining grain yield of a genotype in both stress treatments was its time to flowering. Because of this, yield-yield component relationships under stress were a result of yield component-phenology relationships. Yield potential (measured in an irrigated treatment in the same field) was generally positively related to yield under stress, but accounted for a much smaller fraction of yield variation than time to flowering. These two factors together accounted for more than 50% of the total variation in grain yield under stress, suggesting that genotype drought response (drought resistance/susceptibility) was a secondary rather than a primary factor in differences in yield under stress among the genotypes tested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Prakash I. Gangashetty ◽  
Mohammed Riyazaddin ◽  
Moussa Daouda Sanogo ◽  
Drabo Inousa ◽  
Kassari Ango Issoufou ◽  
...  

Pearl millet is a predominant food and fodder crop in West Africa. This study was carried out to test the newly developed open-pollinated varieties (OPVs) for field performance and stability for grain yield, grain iron (Fe), and grain zinc (Zn) contents across 10 locations in West Africa (i.e., Niger, Nigeria, Mali, Burkina Faso, Senegal, and Ghana). The test material consisted of 30 OPVs, of which 8 are Fe/Zn biofortified. The experiment was conducted in a randomized complete block design in three replications. ANOVA revealed highly significant variability for grain yield and micronutrient traits. The presence of genotype × environment (G × E) indicated that the expressions of traits are significantly influenced by both genetic and G × E factors, for grain Fe and Zn contents. Days to 50% flowering and plant height showed less G × E, suggesting these traits are largely under genetic control. The genotypes CHAKTI (46 days), ICTP 8203 (46 days), ICMV 177002 (50 days), ICMV 177003 (48 days), and Moro (53 days) had exhibited early flowering across locations leading to early physiological maturity. CHAKTI (1.42 t/ha yield; 62.24 mg/kg of grain Fe, 47.29 mg/kg of grain Zn) and ICMP 177002 (1.19 t/ha yield, 62.62 mg/kg of grain Fe, 46.62 mg/kg of grain Zn) have performed well for grain yield and also for micronutrients, across locations, compared with the check. Additive Main Effect and Multiplicative Interaction (AMMI) ANOVA revealed the highly significant genotypic differences, the mean sum of squares of environment, and its interaction with the genotypes. Based on the AMMI stability value (ASV), the most stable genotype is SOSAT-C88 (ASV = 0.04) for grain yield and resistance to downy mildew; mean grain yield and stability rankings (YSI) revealed that the genotypes CHAKTI, SOSAT-C88, and ICMV IS 99001 were high yielding and expressed stability across regions. The strong correlation (r = 0.98∗∗) of grain Fe and Zn contents that merits Fe-based selection is highly rewarding. CHAKTI outperformed over other genotypes for grain yield (71% higher), especially with early maturing varieties in West Africa, such as GB 8735, LCIC 9702, and Jirani, and for grain Fe (16.11% higher) and Zn (7% higher) contents across locations, and made a candidate of high-iron variety to be promoted for combating the micronutrient malnutrition in West and Central Africa (WCA).


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 584
Author(s):  
Omnia M. Elshayb ◽  
Khaled Y. Farroh ◽  
Heba E. Amin ◽  
Ayman M. Atta

Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.


2015 ◽  
Vol 43 (1) ◽  
pp. 153-158 ◽  
Author(s):  
Faruk TOKLU

An experiment was conducted under laboratory and field conditions in order to evaluate the effects of different priming treatments, specifically KNO3 (1%), KCl (2%), KH2PO4 (1%), ZnSO4 (0.05%), PEG-6000 (20%), IBA (100 ppm), Mannitol (4%), GA3 (100 ppm) and distilled water, on seed germination properties and several agro-morphological plant characteristics of red lentil. Seeds not primed were used as a control. GA3 treatment increased shoot length. The control (non-primed seeds) treatment resulted in increased seedling root number and length. Distilled water, ZnSO4 and control treatments increased germination rate and percentage. In the pot experiments, GA3 treatment increased plant height and seedling emergence rate, whereas KCl treatment improved the number of nodules, as well as root and shoot dry weight when compared to the control. ZnSO4 treatment increased yield components and grain yield in field conditions. The results of this study showed that ZnSO4, GA3 and PEG-6000 seed priming treatments may be useful tools due to their positive effects on germination rate, germination percentage, yield component and grain yield of lentil.


1998 ◽  
Vol 130 (3) ◽  
pp. 287-295 ◽  
Author(s):  
C. L. MORGAN

Twenty-eight F1 hybrids of wheat and their parents were grown in field trials at Trumpington, Cambridge during 1986/87 and 1987/88. They were derived from crosses between seven ‘modern’ varieties, used as female parents, and either two ‘old’ (Squareheads Master and Partridge) or two ‘modern’ varieties (Bert and Motto), which were used as male parents. Grain yield, yield components, biomass and height were determined. The male parents were chosen to provide contrasting phenotypes and genetic backgrounds for the F1 hybrids. Mid-parent advantage, the increase of a hybrid for a given character above the mean of its parents, and heterosis, the increase of a hybrid above the ‘better’ parent for that character, were calculated. Most F1 hybrids showed mid-parent advantage for the characters studied. This tended to be greatest for hybrids derived from parents with the largest phenotypic differences in that character. In contrast, where heterosis occurred it tended to be greatest where the phenotypic difference between the parents was least. This suggests that the beneficial effects of hybridization, resulting from the dispersion of dominant genes between the parents, was insufficient to overcome the detrimental effects of other genes present where the ‘less good’ parent was substantially lower than the ‘better’ parent. Hybrids derived from the ‘modern’ male parents had greater heterosis for grain yield and mean grain weight than those from the ‘old’ parents. Of the yield components, positive heterosis for mean grain weight resulted in heavier seeds and was the most important yield component in determining heterosis in grain yield. Heterosis for the number of grains/ear was small or did not differ significantly from zero while number of ears/m2 showed negative heterosis resulting in fewer ears/m2 in the hybrids.


Sign in / Sign up

Export Citation Format

Share Document