EFFECT OF VARYING MAIZE DENSITIES ON INTERCROPPED MAIZE AND SOYBEAN IN NEPAL

2005 ◽  
Vol 41 (3) ◽  
pp. 365-382 ◽  
Author(s):  
R. B. PRASAD ◽  
R. M. BROOK

Maize and soybean are commonly intercropped in the drier zones of the western mid-hills in Nepal, but farmers report that productivity of soybean has been declining in recent years. Two researcher managed on-farm field experiments were conducted in the mid-hills environment of Nepal during 2001 and 2002, and one glasshouse experiment at the University of Wales, Bangor during 2003, to determine whether varying densities of maize and soybean influenced productivity of the system and to what extent soybean exhibited adaptation to shade. In neither season was maize yield affected by the presence of soybean, but grain yield of soybean was reduced in mixture by means of 59 and 53% during 2001 and 2002 respectively. Biomass and grain yield of maize were greatest at 53×103 plants ha−1 and least at the lowest density, whilst conversely biomass and grain yield of soybean increased. With increasing maize density, rates of accumulation of dry matter and leaf area index also increased, the latter resulting in decreasing transmission of light to the intercropped soybean. Soybean exhibited no photosynthetic adaptation to shade, but the specific leaf area was greater in artificially shaded and intercropped plants. Land equivalent ratios of all intercrops were greater than unity (1.30 to 1.45), indicating higher efficiency of intercropping compared to sole crops. Given the low plasticity in response of the maize canopy to variations in density, it is suggested that soybean could be better grown under maize by increasing between-row spacing of maize from 0.75 to 1.0 m to improve light transmission to the understorey, resulting in higher overall productivity of the intercropping system, and also that soybean germplasm be screened for adaptation to shade.

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 269 ◽  
Author(s):  
Guangzhou Liu ◽  
Yunshan Yang ◽  
Wanmao Liu ◽  
Xiaoxia Guo ◽  
Jun Xue ◽  
...  

Increasing planting density is an important practice associated with increases in maize yield, but densely planted maize can suffer from poor light conditions. In our two-year field experiments, two morphologically different cultivars, ZD958 (less compact) and DH618 (more compact), were planted at 120,000 plants ha−1 and 135,000 plants ha−1, respectively. We established different leaf area index (LAI) treatments by removing leaves three days after silking: (1) control, no leaves removed (D0); (2) the two uppermost leaves removed (D1); (3) the four uppermost leaves removed (D2); (4) the leaves below the third leaf below the ear removed (D3); (5) the leaves of D1 and D3 removed (D4); (6) the leaves of D2 and D3 removed (D5). Optimal leaf removal improved light distribution, increased photosynthetic capacity and the post-silking source-sink ratio, and thus the grain yield, with an average LAI of 5.9 (5.6 and 6.2 for ZD958 and DH618, respectively) for the highest yields in each year. Therefore, less-compact cultivars should have smaller or fewer topmost leaves or leaves below the ear that quickly senesce post-silking, so as to decrease leaf area and thus improve light distribution and photosynthetic capacity in the canopy under dense planting conditions. However, for more compact cultivars, leaves below the ear should senesce quickly after silking to reduce leaf respiration and improve the photosynthetic capacity of the remaining top residual leaves. In future maize cultivation, compact cultivars with optimal post-silking LAI should be adopted when planting densely.


2020 ◽  
Vol 15 (1) ◽  
pp. 106-122
Author(s):  
J. Alam ◽  
R. K. Panda

 Any change in climate will have implications for climate-sensitive systems such as agriculture, forestry and some other natural resources. Changes in solar radiation, temperature and precipitation will produce changes in crop yields and hence economics of agriculture. It is possible to understand the phenomenon of climate change on crop production and to develop adaptation strategies for sustainability in food production, using a suitable crop simulation model. CERES-Maize model of DSSAT v4.0 was used to simulate the maize yield of the region under climate change scenarios using the historical weather data at Kharagpur (1977-2007), Damdam (1974-2003) and Purulia (1986-2000), West Bengal, India. The model was calibrated using the crop experimental data, climate data and soil data for two years (1996-1997) and was validated by using the data of the year 1998 at Kharagpur. The change in values of weather parameters due to climate change and its effects on the maize crop growth and yield was studied. It was observed that increase in mean temperature and leaf area index have negative impacts on maize yield. When the maximum leaf area index increased, the grain yield was found to be decreased. Increase in CO2 concentration with each degree incremental temperature decreased the grain yield but increase in CO2 concentration with fixed temperature increased the maize yield. Adjustments were made in the date of sowing to investigate suitable option for adaptation under the future climate change scenarios. Highest yield was obtained when the sowing date was advanced by a week at Kharagpur and Damdam whereas for Purulia, the experimental date of sowing was found to be beneficial.


2015 ◽  
Vol 27 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Soheila Dastborhan ◽  
Kazem Ghassemi-Golezani

Abstract Borage is a valuable medicinal plant with various constituents in leaves, flowers and seeds. Hence, it is important to improve the performance of this medicinal plant under different environmental conditions. Thus, two field experiments were arranged as split-plots based on a RCB design with three replications in 2012 and 2013, to evaluate the effects of seed priming and different irrigation intervals on selected physiological properties of borage leaves. Irrigation intervals (irrigation after 60, 90, 120, 150 mm evaporation from Class A pans, respectively) and priming treatments (control, water, KNO3 and KH2PO4) were allocated to the main and sub plots, respectively. The chlorophyll content index was enhanced under limited irrigation treatments, mainly due to a decrease in leaf area index and intercepting more radiation. However, the membrane stability index was stable under different irrigation intervals. Decreased relative water content and leaf area index and increased leaf temperature under lower water availability led to some reductions in the grain yield of borage. All of the priming techniques, particularly hydro-priming, enhanced the seedling emergence rate, leaf area index and consequently grain yield per unit area. Therefore, seed hydro-priming can be used to improve the field performance of borage, particularly when sufficient water is available.


1975 ◽  
Vol 84 (2) ◽  
pp. 305-312 ◽  
Author(s):  
P. E. L. Thomas ◽  
J. C. S. Allison

SUMMARYOne pot and five field experiments were made to study different aspects of the competition between R. exaltata and maize.The growth of young maize plants was not inhibited by being grown together in pots with young R. exaltata plants. In the field the soil tended to be somewhat wetter when the two species were grown together than when maize was grown alone, and was wettest with R. exaltata grown alone. Maize grain and total yield decreased and shoot yield of R. exaltata increased with R. exaltata plant density on both irrigated and unirrigated blocks of land, but yields were not much affected on either block by increase in plant density of maize or in nitrogen supply; maize yield was increased by irrigation but that of R. exaltata was not. Maize plant arrangement did not greatly affect maize grain and total yield or R. exaltata shoot yield, nor did arrangement of R. exaltata plants have much influence on their depression of maize yield, but R. exaltata caused a greater decrease in the grain yield of a short than of a tall maize cultivar.R. exaltata plants germinating at the same time as the crop plants did not have much effect on maize grain yield if they were removed by 8 weeks after the seedlings emerged, but decreased it considerably if allowed to remain for 12 weeks or more; weeds sown 2 or more weeks after the maize emerged hardly grew and had little effect on maize yield. When maize and R. exaltata were grown together leaf area of the maize was little affected up to the time of flowering, but was decreased after flowering, while leaf area of the weed was greatly depressed. Up to 7–8 weeks after seedling emergence more of the ground area was covered by foliage when maize was grown with R. exaltata than when it was grown alone, but later the ground was completely covered by foliage in both cases. Dry weight of grain and shoot of maize increased and that of shoot of R. exaltata decreased when the weed plants were shortened with growth regulators.


2021 ◽  
Vol 12 (5) ◽  
pp. 594-602
Author(s):  
L. Rana ◽  
◽  
H. Banerjee ◽  
D. Mazumdar ◽  
S. Sarkar ◽  
...  

The field experiments were conducted at farmer’s field, Madandanga village under Chakdaha Block of Nadia district in West Bengal during rabi season 2014-15 and 2015-16. Treatments were distributed in split-factorial design, with three varieties (P ‘3533’, P ‘3396’, P ‘30V92’) in the main plot and three planting density (55,555, 66,666, 83,333 plants ha-1) × three sowing dates (November 20, November 30, December 10) combinations in the sub-plots, replicated thrice. Irrespective of planting density and sowing date, the variety ‘P30V92’ produced the highest yield, followed by ‘P3396’ and ‘P3533’. The significantly highest grain and stover yield was obtained in high density planting (83,333 plants ha-1), accounting 44.2 and 39.6% more than low planting density (55,555 plants ha-1), respectively. The maximum grain and stover yields were obtained from Nov. 20 sown plants; being 7.71 and 11.95% more than the grain yield derived from late sown (Dec. 10) plants. A correlation study showed that among the growth and yield components, leaf area index (0.96) and shelling percentage (0.91) exhibited highly positive direct effects on the grain yield of hybrid maize. However, other growth attributes, namely P uptake (0.88), K uptake (0.86) and plant height (0.81) exerted comparatively low positive direct effects on the grain yield of hybrid maize. Further, the standard regression equation revealed a significant relationship of shelling percentage (p≤0.01), leaf area index (p≤0.01) and uptake of P (p≤0.05) with grain yield.


1972 ◽  
Vol 78 (1) ◽  
pp. 73-78 ◽  
Author(s):  
B. O. Adelana ◽  
G. M. Milbourn

SUMMARYWork that has been reported from some African countries indicates a dependence of grain yield in maize on the duration of leaf area after flowering. This paper studies maize yield in south-east England and confirms work at a similar northern latitude in Canada which has shown that considerable remobilization of photosynthate from the stem to the ear takes place during the main ear fill period.A similar grain yield was obtained from two contrasting hybrids. In a short early hybrid, Kelvedon 75A, there was a low peak leaf area index (5·3) but the net assimilation rate was high due possibly to efficient light interception by leaves that maintained an erect posture. Stem dry matter was also low and hence in this hybrid the high reproductive/vegetative ratio shows that there has been economy in the production of leaves and stem, especially as a 48% stem loss occurred during the period of ear fill.In contrast, in a later hybrid, Anjou 210, the final shoot dry matter was 20% higher as the peak leaf-area index of 7·7 gave slightly higher crop growth rates than K 75A. Although the remobilization of stem dry matter was similar in both hybrids it was notable that a different partition of dry matter in the ears of Anjou 210 gave a higher grain/rachis ratio.


2019 ◽  
Vol 32 ◽  
pp. 8-25
Author(s):  
Lamiaa M. Al-Freeh ◽  
Sundus A. Alabdulla ◽  
Kadhim H. Huthily

To study the effect of biofertilizers on physiological parameters and yield  of three varieties of Oat (Avena sativa L.), field experiments were conducted during winter seasons 2016-2017 and 2017-2018 at Al- Zubair district (20 km. West of Basrah province) in sandy loam soils. A split plot arrangement, using RCBD with three replicates, the main plots contained varieties: V1 (Genzania), V2 (Shaffaa),  V3  (Carloup), Biofertilizer, treatments were at the sub plots: B0 (control), B1 (NPK mineral fertilizer as recommended), B2 (biofertilizers NPK), B3 (mineral fertilizer PK+ biofertilizers N), B4 (mineral fertilizer K+ biofertilizers NP), B5 (mineral fertilizer P + biofertilizers NK), B6 (mineral fertilizer N + biofertilizers PK). Data were collected on Flag leaf area FLA, Leaf area duration LAD, Leaf area index LAI, Crop growth rate CGR, Relative growth rate RGR, Net assimilation rate NAR, Plant high Tillers number m2 and grain yield t ha-1. The results showed that the adding of biofertilizers NPK (B2) led to a significant increase in the studied traits (FLA, LAD, LAI, CGR, RGR, NAR, and grain yield). The grain yield were increased about 189.96 and 197.3% as compared with control in each seasons respectively. Cultivar Genzania resulted in highest grain yield among studied varieties in the first season (5.774 t ha-1), while cultivar Shaffa  gave the highest grain yield in the second season (8.691 t ha-1). The interaction between Ganzania and B2 treatment recorded the highest seed yield (8.429 tan ha-1) in the first season. While, in the second season all varieties that interacted with B2 treatment produced the highest seed yield.


2015 ◽  
pp. 51-56
Author(s):  
Eszter Murányi

We have investigated the plant number reactions of three maize hybrids of various genotypes in a small-plot field experiment. The plant numbers were 50, 70 and 90 thousand ha-1, while the row distances were 45 and 76 cm. The experiment was set on the Látókép Experimental Farm of Centre for Agricultural Sciences of the University of Debrecen in four replications on calcareous chernozem soil. The assimilation area and the leaf area index have important role in development of the crop yield. The studied three different genotype maize hybrids reached its maximum leaf area index at flowering. The maximum leaf area index increased linearly with increasing plant density. The season-hybrids reached less yield and leaf area index. According to our experimental results, we have concluded that with the decrease of the row spacing, the yield increased in the average of the hybrids. The studied hybrids reached the maximum yield at 70 and 90 plants ha-1 plant density. We determined the optimal plant number that is the most favourable for the certain hybrid under the given conditions.The higher plant density was favourable at 45 cm row spacing than 76 cm. The hybrids reached the maximum grain yield at 45 cm row spacing between 76 712–84 938 plants ha-1, while the optimum plant density at 76 cm row spacing changed between 61 875–65 876 plants ha-1. The leaf area index values between the applied plant density for the flowering period (July 1, 24), we defined a significant differences. In the archived yields were significant differences at the 45 cm row spacing between 50 and 70, 90 thousand ha-1 plant density, while the number for the 76 cm row spacing used did not cause a significant differences in the yield. There were significant differences between the examined hybrids of yields.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Abduraman Nure ◽  
Husen Aman Jara

Corn is an important cereal crop in Ethiopia due to its use as a source of food security. However, its productivity is limited by insufficient application of the NPS fertilizer and different row spacing. A field trial was carried out to assess the effects of the application of different NPS fertilizer quantities and inter row spacing on the growth, yield components and yield of maize and the cost-benefit analysis of the NPS compound fertilizer application on the yield of maize in the main growing season 2019/2020.The study was arranged in a factorial combination of five levels of NPS fertilizers (0, 50, 100, 150 and 200 kg NPS ha-1) and four inter row spacing (55 cm, 65 cm, 75 cm and 85 cm). in a randomized complete block design with three replications. The consequence showed the main result of the NPS fertilizer had a highly significant (p <0.01) effect on days up to 50% anthesis, days up to 50% silk formation, 90% physiological maturity, leaf area, leaf area index, number of plants at harvest, the number of grains per ear was determined from the main effects of NPS fertilizer of 200 kg NPS ha-1. The interaction effects of NPS and row spacing have highly significant (p <0.01) effects on the number of ears per plant, number of ears per hectare, ear length, agronomic effectiveness and grain yield were obtained when using 150 kg. measured NPS ha-1 at 75 cm row spacing. The highest economic (91,608 Birr ha-1) and a higher MRR (1745%) resulted from the 150 kg NPS ha-1 and 75 cm row spacing. Thus, it should be noted that the application of 150 kg NPS ha-1 with a row spacing of 75 cm was both agronomic and cost-effective for the grain yield of the Melkassa-II in the study area.


Sign in / Sign up

Export Citation Format

Share Document