POTENTIAL AND CONSTRAINTS OF LITTLE BAG SILAGE FOR SMALLHOLDERS-RESULTS AND EXPERIENCES FROM HONDURAS

2009 ◽  
Vol 45 (2) ◽  
pp. 209-220 ◽  
Author(s):  
CHRISTOPH REIBER ◽  
RAINER SCHULTZE-KRAFT ◽  
MICHAEL PETERS ◽  
VOLKER HOFFMANN

SUMMARYLittle bag silage (LBS) is seen as a low-cost alternative suitable for resource-poor smallholders to alleviate dry-season feed constraints. Within a research project carried out by the International Center for Tropical Agriculture and partners in Honduras, LBS was tested and its use encouraged during farmer training and field days. The present study highlights the most relevant technological and socio-economic potential and constraints of LBS. Surveys and experimental results revealed great vulnerability of plastic bags to pests, particularly rodents, accompanied by high spoilage losses. The main constraints to wider adoption include availability of i) suitable and affordable plastic bags, and ii) appropriate chopping equipment and storage facilities on smallholder farms. LBS proved to be useful and could play an important role in participatory research and extension activities, as a demonstration, experimentation and learning tool that can be used to get small-scale silage novices started with a low-risk technology.

Author(s):  
R. Stuart Haszeldine ◽  
Stephanie Flude ◽  
Gareth Johnson ◽  
Vivian Scott

How will the global atmosphere and climate be protected? Achieving net-zero CO 2 emissions will require carbon capture and storage (CCS) to reduce current GHG emission rates, and negative emissions technology (NET) to recapture previously emitted greenhouse gases. Delivering NET requires radical cost and regulatory innovation to impact on climate mitigation. Present NET exemplars are few, are at small-scale and not deployable within a decade, with the exception of rock weathering, or direct injection of CO 2 into selected ocean water masses. To keep warming less than 2°C, bioenergy with CCS (BECCS) has been modelled but does not yet exist at industrial scale. CCS already exists in many forms and at low cost. However, CCS has no political drivers to enforce its deployment. We make a new analysis of all global CCS projects and model the build rate out to 2050, deducing this is 100 times too slow. Our projection to 2050 captures just 700 Mt CO 2  yr −1 , not the minimum 6000 Mt CO 2  yr −1 required to meet the 2°C target. Hence new policies are needed to incentivize commercial CCS. A first urgent action for all countries is to commercially assess their CO 2 storage. A second simple action is to assign a Certificate of CO 2 Storage onto producers of fossil carbon, mandating a progressively increasing proportion of CO 2 to be stored. No CCS means no 2°C. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.


2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


2012 ◽  
Vol 44 (2) ◽  
pp. 75-93
Author(s):  
Peter Mortensen

This essay takes its cue from second-wave ecocriticism and from recent scholarly interest in the “appropriate technology” movement that evolved during the 1960s and 1970s in California and elsewhere. “Appropriate technology” (or AT) refers to a loosely-knit group of writers, engineers and designers active in the years around 1970, and more generally to the counterculture’s promotion, development and application of technologies that were small-scale, low-cost, user-friendly, human-empowering and environmentally sound. Focusing on two roughly contemporary but now largely forgotten American texts Sidney Goldfarb’s lyric poem “Solar-Heated-Rhombic-Dodecahedron” (1969) and Gurney Norman’s novel Divine Right’s Trip (1971)—I consider how “hip” literary writers contributed to eco-technological discourse and argue for the 1960s counterculture’s relevance to present-day ecological concerns. Goldfarb’s and Norman’s texts interest me because they conceptualize iconic 1960s technologies—especially the Buckminster Fuller-inspired geodesic dome and the Volkswagen van—not as inherently alienating machines but as tools of profound individual, social and environmental transformation. Synthesizing antimodernist back-to-nature desires with modernist enthusiasm for (certain kinds of) machinery, these texts adumbrate a humanity- and modernity-centered post-wilderness model of environmentalism that resonates with the dilemmas that we face in our increasingly resource-impoverished, rapidly warming and densely populated world.


Author(s):  
Christian Frilund ◽  
Esa Kurkela ◽  
Ilkka Hiltunen

AbstractFor the realization of small-scale biomass-to-liquid (BTL) processes, low-cost syngas cleaning remains a major obstacle, and for this reason a simplified gas ultracleaning process is being developed. In this study, a low- to medium-temperature final gas cleaning process based on adsorption and organic solvent-free scrubbing methods was coupled to a pilot-scale staged fixed-bed gasification facility including hot filtration and catalytic reforming steps for extended duration gas cleaning tests for the generation of ultraclean syngas. The final gas cleaning process purified syngas from woody and agricultural biomass origin to a degree suitable for catalytic synthesis. The gas contained up to 3000 ppm of ammonia, 1300 ppm of benzene, 200 ppm of hydrogen sulfide, 10 ppm of carbonyl sulfide, and 5 ppm of hydrogen cyanide. Post-run characterization displayed that the accumulation of impurities on the Cu-based deoxygenation catalyst (TOS 105 h) did not occur, demonstrating that effective main impurity removal was achieved in the first two steps: acidic water scrubbing (AWC) and adsorption by activated carbons (AR). In the final test campaign, a comprehensive multipoint gas analysis confirmed that ammonia was fully removed by the scrubbing step, and benzene and H2S were fully removed by the subsequent activated carbon beds. The activated carbons achieved > 90% removal of up to 100 ppm of COS and 5 ppm of HCN in the syngas. These results provide insights into the adsorption affinity of activated carbons in a complex impurity matrix, which would be arduous to replicate in laboratory conditions.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model estimations with measured NO2 concentrations. The results showed that the data fusion approach was capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant from the model estimations and adjusted the modelled values using the measured concentrations. Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road traffic was considered to be the dominant emission source of NO2 in Sheffield.


2018 ◽  
Author(s):  
Gonzalo Duró ◽  
Alessandra Crosato ◽  
Maarten G. Kleinhans ◽  
Wim S. J. Uijttewaal

Abstract. Diverse methods are currently available to measure river bank erosion at broad-ranging temporal and spatial scales. Yet, no technique provides low-cost and high-resolution to survey small-scale bank processes along a river reach. We investigate the capabilities of Structure-from-Motion photogrammetry applied with imagery from an Unmanned Aerial Vehicle (UAV) to describe the evolution of riverbank profiles in middle-size rivers. The bank erosion cycle is used as a reference to assess the applicability of different techniques. We surveyed 1.2 km of a restored bank of the Meuse River eight times within a year, combining different photograph perspectives and overlaps to identify an efficient UAV flight to monitor banks. The accuracy of the Digital Surface Models (DSMs) was evaluated compared with RTK GPS points and an Airborne Laser Scanning (ALS) of the whole reach. An oblique perspective with eight photo overlaps was sufficient to achieve the highest relative precision to observation distance of ~1:1400, with 10 cm error range. A complementary nadiral view increased coverage behind bank toe vegetation. The DSM and ALS had comparable accuracies except on banks, where the latter overestimates elevations. Sequential DSMs captured signatures of the erosion cycle such as mass failures, slump-block deposition, and bank undermining. Although this technique requires low water levels and banks without dense vegetation, it is a low-cost method to survey reach-scale riverbanks in sufficient resolution to quantify bank retreat and identify morphological features of the bank failure and erosion processes.


2016 ◽  
Author(s):  
A. Ribeiro ◽  
C. Vilarinho ◽  
J. Araújo ◽  
J. Carvalho

The increasing of world population, industrialization and global consuming, existing market products existed in the along with diversification of raw materials, are responsible for an exponential increase of wastes. This scenario represents loss of resources and ultimately causes air, soils and water pollution. Therefore, proper waste management is currently one of the major challenges faced by modern societies. Textile industries represents, in Portugal, almost 10% of total productive transforming sector and 19% of total employments in the sector composed by almost 7.000 companies. One of the main environmental problems of textile industries is the production of significant quantities of wastes from its different processing steps. According to the Portuguese Institute of Statistics (INE) these industries produce almost 500.000 tons of wastes each year, with the textile cotton waste (TCW) being the most expressive. It was estimated that 4.000 tons of TCW are produced each year in Portugal. In this work an integrated TCW valorisation procedure was evaluated, firstly by its thermal and energetic valorisation with slow pyrolysis followed by the utilization of biochar by-product, in lead and chromium synthetic wastewater decontamination. Pyrolysis experiments were conducted in a small scale rotating pyrolysis reactor with 0.1 m3 of total capacity. Results of pyrolysis experiments showed the formation of 0,241 m3 of biogas for each kilogram of TCW. Results also demonstrated that the biogas is mostly composed by hydrogen (22%), methane (14 %), carbon monoxide (20%) and carbon dioxide (12%), which represents a total high calorific value of 12.3 MJ/Nm3. Regarding biochar, results of elemental analysis demonstrated a high percentage of carbon driving its use as low cost adsorbent. Adsorption experiments were conducted with lead and chromium synthetic wastewaters (25, 50 and 100 mg L−1) in batch vessels with controlled pH. It was evaluated the behaviour of adsorption capacity and removal rate of each metal during 120 minutes of contact time using 5, 10 and 50 g L−1 of adsorbent dosage. Results indicated high affinity of adsorbent with each tested metal with 78% of removal rate in chromium and 95% in lead experiments. This suggests that biochar from TCW pyrolysis may be appropriated to wastewaters treatment, with high contents of heavy metals and it can be an effective alternative to activated carbon.


2000 ◽  
Vol 15 (1) ◽  
pp. 2-8 ◽  
Author(s):  
N.C. Wagner ◽  
S. Ramaswamy ◽  
U. Tschirner

AbstractA pre-economic feasibility study was undertaken to determine the potential of cereal straw for industrial utilization in Minnesota. Specifically, utilizing straw for pulp and paper manufacture was of interest. The availability of cereal straw fiber supplies at various locations across the state of Minnesota, along with pre-processing issues such as transportation, harvesting, handling, and storage, are discussed and priced. The greatest economic advantage of straw for industrial use appears to be the low cost of the raw material compared to traditional raw materials. This also provides an excellent opportunity for additional income for farmers. The methodology and information provided here should be helpful in evaluating the feasibility of utilizing straw for other industrial purposes in other parts of the world. However, in some Third World countries, long-standing on-farm, traditional uses of cereal straws for fuel, fiber, and animal feed may limit their availability for industrial utilization.


2005 ◽  
Vol 41 (1) ◽  
pp. 81-92 ◽  
Author(s):  
G. P. BUTLER ◽  
T. BERNET ◽  
K. MANRIQUE

Potatoes are an important cash crop for small-scale producers worldwide. The move away from subsistence to commercialized farming, combined with the rapid growth in demand for processed agricultural products in developing countries, implies that small-scale farmers and researchers alike must begin to respond to these market changes and consider post-harvest treatment as a critical aspect of the potato farming system. This paper presents and assesses a low cost potato-grading machine that was designed explicitly to enable small-scale potato growers to sort tubers by size for supply to commercial processors. The results of ten experiments reveal that the machine achieves an accuracy of sort similar to commercially available graders. The machine, which uses parallel conical rollers, has the capacity to grade different tuber shapes and to adjust sorting classes, making it suitable for locations with high potato diversity. Its relatively low cost suggests that an improved and adapted version of this machine might enhance market integration of small-scale potato producers not only in Peru, but in other developing countries as well.


Sign in / Sign up

Export Citation Format

Share Document