TANNINS IN GOAT DIETS MODIFY MANURE TURNOVER IN A SUBTROPICAL SOIL

2017 ◽  
Vol 54 (5) ◽  
pp. 655-669 ◽  
Author(s):  
MARIKO INGOLD ◽  
SASKIA SCHMIDT ◽  
HERBERT DIETZ ◽  
RAINER GEORG JOERGENSEN ◽  
EVA SCHLECHT ◽  
...  

SUMMARYQuality of animal manure as a nutrient source for crops and as a soil conditioner depends on how fast the organic matter is decomposed, releasing plant nutrients or building up the soil organic matter (SOM) pool. This turnover process is governed by manure composition, soil temperature, soil moisture and secondary metabolites in the manure such as tannins. To investigate the turnover and nutrient release from tannin-containing manure, a litterbag experiment was conducted in an irrigated lowland soil of northern Oman. A standardized quebracho tannin extract (QT) was either added to the goats’ diet and defecated with manure (QTf), or added to manure in a QT water suspension (QTc) prior to field application. Litterbags were installed within a two-year field experiment at 10-cm depth at the beginning of a consecutive sweet corn and radish cultivation, followed by their recovery every 2-–6 weeks until crop harvests. The litterbags contained pure goat manure (control) and the two types of QT-amended goat manure. Generally, QT increased OM remaining in litterbags at sampling by up to 22% compared with the control. QT reduced relative C, N, P and K release by 10% to 63% compared with the control, but effects were contradictory under sweet corn and radish. While under radish, both QT treatments reduced or tended to reduce C, N, P and K release from manure, QTc even increased N and P release under sweet corn. QTf, on the other hand, did not affect C, P and K release under sweet corn, whereas N release was reduced by 36–63% under both crops. As quebracho tannins in goat manure slowed down organic matter decomposition and reduced nutrient release, they may be useful agents in manure application to increase SOM pools and soil nutrient pools. However, the immobilization particularly of N by tannins can reduce the availability of this nutrient to crops.

2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


2021 ◽  
Vol 12 ◽  
pp. e00727
Author(s):  
Asteria Aili Ndiipohamba Katakula ◽  
Bethold Handura ◽  
Werner Gawanab ◽  
Fisseha Itanna ◽  
Hupenyu Allan Mupambwa

1981 ◽  
Vol 11 (2) ◽  
pp. 259-274 ◽  
Author(s):  
Keith Van Cleve ◽  
Richard Barney ◽  
Robert Schlentner

Selected indices of structure and function were used to evaluate the effect of differing soil thermal regimes on soil-permafrost-dominated (muskeg) and permafrost-free (north-slope) black spruce ecosystems in interior Alaska. The poorly drained, permafrost site displayed cooler soil temperatures and higher soil moisture content than were encountered on the well-drained north slope. Mineral soil nutrient pools generally were largest on the permafrost site. However, low soil temperature acted as a negative feedback control, suppressing soil biological activity, nutrient mineralization, and tree primary production to lower levels on the soil-permafrost-dominated site as compared with the permafrost-free site. Forty percent larger accumulation of tree biomass and 80% greater annual tree productivity occurred on the warmer site.


2021 ◽  
Vol 1 (1) ◽  
pp. 021-028
Author(s):  
Mukhtar Iderawumi ABDULRAHEEM ◽  
Sulaimon Abidemi LAWAL

Many see organic agriculture as the most sustainable form of farming and as the paradigm for global food production in the future. One of the solutions to food insecurity and malnutrition in Sub-Saharan Africa is to promote local crops, encourage the use of locally source materials as amendment, improve their traditional system of production, and so diversify subsistence crop. The major reasons are the lack of knowledge and skill in land preparation and agronomic practices, weather uncertainties, pest outbreak and above all the use of fertilizer. Hence, this research will be carried out to investigate the effects of integrated application of Urea fertilizer and Goat Manure on soil Nutrient Availability and Okra performance. Field trials were conducted with four treatments replicated three times in a Randomized Complete Block Design (RCBD). The treatments were Control (no Urea, no goat manure), 8t/ha-1 goat manure + 200kg/ha-1 urea fertilizer; 8t/ha-1 goat manure + 175kg/ha-1 urea fertilizer and 8t/ha-1 goat manure + 150kg/ha-1 urea fertilizer. Treatments were applied three weeks after planting by ring method with Urea and goat manure mixed. Soil physical and chemical properties, growth and yield parameters were evaluated. Data were analyzed using Analysis of Variance (ANOVA) and Duncan Multiple Range. 8t/ha-1 goat manure + 200kg/ha-1 urea fertilizer gave the highest plant height, leaf area as well as number of leaves than other treatment. However, the fruits weight, days of 50% flowering, number of fruit, fruits diameter and fruits length were significantly increased at 8t/ha-1 goat manure + 200kg/ha-1 urea fertilizer.


HortScience ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 896-904 ◽  
Author(s):  
Rebecca J. Long ◽  
Rebecca N. Brown ◽  
José A. Amador

Using organic wastes as agricultural amendments is a productive alternative to disposal in landfills, providing nutrients for plant growth and carbon to build soil organic matter. Despite these benefits, a large fraction of organic waste is sent to landfills. Obstacles to the adoption of wastes as sources of plant nutrients include questions about harmful effects to crops or soils and the wastes’ ability to produce satisfactory yields. We compared six organic waste amendments with a mineral fertilizer control (CN) to determine effects on soil quality, soil fertility, crop quality, and crop yield in 2013 and 2014. Waste amendments were applied at a rate sufficient to supply 10,000 kg organic C/ha over two seasons, and mineral fertilizer was applied to control plots to provide 112 kg-N/ha/yr. The experiment was laid out in a randomized block design with four replicates and three crops: sweet corn (Zea mays L. cv. Applause, Brocade, and Montauk), butternut squash (Cucurbita moschata Duchesne cv. JWS 6823), and potatoes (Solanum tuberosum L. cv. Eva). Amendment with biosolids/yard waste cocompost (BS), dehydrated restaurant food waste (FW), gelatin manufacturing waste (GW), multisource compost (MS), paper fiber/chicken manure blend (PF), and yard waste compost (YW) did not have a negative impact on soil moisture, bulk density, electrical conductivity (EC), or the concentration of heavy metals in soil or plant tissue. Our results indicate potential uses for waste amendments including significantly raising soil pH (MS) and increasing soil organic matter [OM (YW and BS)]. The carbon-to-nitrogen ratio (C:N) of waste amendments was not a reliable predictor of soil inorganic N levels, and only some wastes increased potentially mineralizable nitrogen (PMN) levels relative to the control. Plots amended with BS, FW, and GW produced yields of sweet corn, butternut squash, and potatoes comparable with the control, whereas plots amended with YW, PF, and MS produced lower yields of sweet corn, squash, or both, although yields for potatoes were comparable with the control. In addition, the marketability of potatoes from PF plots was significantly better than that of the control in 2014. None of the wastes evaluated in this study had negative impacts on soil properties, some provided benefits to soil quality, and all produced comparable yields for at least one crop. Our results suggest that all six wastes have potential to be used as sources of plant nutrients.


1994 ◽  
Vol 42 (3) ◽  
pp. 269 ◽  
Author(s):  
MA Adams ◽  
J Iser ◽  
AD Keleher ◽  
DC Cheal

Analyses of carbon, nitrogen and phosphorus in heathland soils at Wilsons Promontory and on Snake Island show that the effects of fire, including repeated fires, are confined to the surface 2 cm. The uppermost soil in long-unburnt heathlands is rich in these elements and usually has a smaller C:N ratio compared with the soil below. Indices of N and P availability (C:N ratios, concentrations of potentially mineralisable N and extractable inorganic P, phosphatase activity) are similar to those in highly productive eucalypt forests-a finding in conflict with past assessments of nutrient availability in heathlands. Phosphatase activity and concentrations of carbon, nitrogen and potentially mineralisable N were less in soils from repeatedly burnt heathlands than in soils from long unburnt heathlands whereas there was a greater concentration of extractable inorganic P in soils from repeatedly burnt heathlands. The balance between nitrogen input and loss is dependent on fire frequency and present-day management of heathland (and other native plant communities with low nutrient capitals) should recognise that over- or under-use of fire will significantly alter soil nutrient pools and availability and that these changes may alter community species composition and productivity.


2021 ◽  
Vol 9 (11) ◽  
pp. 422-430
Author(s):  
Achoh Mardochee Ephraim ◽  
◽  
Agadjihouede Hyppolite ◽  
Gangbe Luc ◽  
Aizonou Romaric ◽  
...  

The present study aim to estimate the ratio of aquaculture in the phosphorus and nitrogen concentrations determined in the Toho - Todougba lagoons. For this purpose, the two lagoons were subdivided into 7 stations for the determination of phosphorus and nitrogen concentrations in the water column. Production data from 2017 to 2019 were collected from the Direction of the Ficheries Production and from the literature. Data for 2020 were collected directly from fish farmers. Annual tilapia production was estimated by year and the amounts of phosphorus and nitrogen released from aquaculture are deduced based on the ratio of Montanhini Neto & Ostrensky (2013). The concentration of each of these nutrients was estimated by station and compared to the concentration determined by laboratory analysis of the water. This methodology shows that the amount of phosphorus and nitrogen released to the environment varies from 0.49 mg/L to 0.18 mg/L for phosphorus and from 1.53 mg/L to 0.58 mg/L for nitrogen. The lowest values are obtained in 2020 and differ significantly from the other years (p <0.05). The quantity of phosphorus discharged is higher at the high production stations (Tonon 0.20 mg/L and Lokohoue 0.11 mg/L). Some of this is stored in the sediment. The nitrogen generated by aquaculture is significantly lower than the average determined in water (p <0.05). However, the concentration determined is still related to the amount of organic matter released due to aquaculture. Although aquaculture is not the only source of nutrient release to water, strategies for aquaculture with less nutrient release should be determined.


2015 ◽  
Vol 12 (15) ◽  
pp. 4565-4575 ◽  
Author(s):  
C. Sanz-Lázaro ◽  
T. Valdemarsen ◽  
M. Holmer

Abstract. Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems. In these systems sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43− release rates from sediments followed the same trends as organic matter mineralization rates, increased linearly with temperature and were significantly higher under organic pollution than under nonpolluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and it was significantly higher in organic polluted compared to nonpolluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43− retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible for this behavior. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at a temperature rise > 6 °C could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.


Sign in / Sign up

Export Citation Format

Share Document