Closure of India–Asia collision margin along the Shyok Suture Zone in the eastern Karakoram: new geochemical and zircon U–Pb geochronological observations

2020 ◽  
Vol 157 (9) ◽  
pp. 1451-1472 ◽  
Author(s):  
Shailendra Pundir ◽  
Vikas Adlakha ◽  
Santosh Kumar ◽  
Saurabh Singhal

AbstractNew whole-rock geochemical analyses along with laser ablation multi-collector inductively coupled plasma mass spectrometry U–Pb zircon ages of the granite–rhyolite from the Karakoram Batholith, exposed along the Shyok Valley, NW India, have been performed to understand the timing and geochemical evolution of these magmatic bodies and their implications for the geodynamic evolution of the Karakoram Batholith. New geochronological data on granites and rhyolites along with previously published geochronological data indicate that the Karakoram Batholith evolved during Albian time (~110–100 Ma) owing to the subduction of Tethys oceanic lithosphere along the Shyok Suture Zone. This region witnessed a period of no magmatism during ~99–85 Ma. Following this, the Kohistan–Ladakh arc and Karakoram Batholith evolved as a single entity in Late Cretaceous and early Palaeogene times. Late Cretaceous (~85 Ma) rhyolite intrusions within the Karakoram Batholith show calc-alkaline subduction-related signatures with a highly peraluminous nature (molar A/CNK = 1.42–1.81). These intrusions may have resulted from c. ~13.8 % to ~34.5 % assimilation of pre-existing granites accompanied by fractional crystallization during the ascent of the magma. The contamination of mantle wedge-derived melts with crust of the active continental margin of the Karakoram most likely enhanced the high peraluminous nature of the rhyolite magma, as has been constrained by assimilation fractional crystallization modelling. Two granite samples from the contact of the Shyok Metamorphic Complex and Karakoram Batholith indicate that the post-collisional Miocene magmatism was not only confined along the Karakoram Fault zone but also extends ~30 km beyond the Shyok–Muglib strand.

2020 ◽  
Vol 115 (3) ◽  
pp. 489-503 ◽  
Author(s):  
Scott Halley

Abstract Analytical methods used by commercial assay laboratories have improved enormously in recent years. Inductively coupled plasma-atomic emission spectroscopy and inductively coupled plasma-mass spectrometry methods now report analyses for half of the periodic table with exceptional detection limits and precision. It is becoming commonplace for mining companies to use such methods routinely for the analysis of drill samples throughout mineral deposits. Improvements in software and computing power now allow rapid interrogation of upward of 100,000 assay samples. Geochemical analyses are quantitative, are independent of observer bias, and can form the basis for robust geologic and mineralogical models of mineral deposits, as well as shed light on scientific questions. In particular, consistently collected, high-quality geochemical analyses can significantly improve and systematize logging of lithological and hydrothermal alteration mineralogic changes within drill core. In addition, abundant, high-quality geochemical data provide insights into magmatic and hydrothermal processes that were previously difficult to recognize and that have obvious applications to mineral exploration and improved genetic models of ore deposits. This paper describes a workflow that mining industry geologists can apply to their multielement analysis data to extract more information about magma compositions and gangue mineralogy.


2017 ◽  
Vol 50 (2) ◽  
pp. 616
Author(s):  
C. Athanassoulis ◽  
S. Zaimis ◽  
A. Chatziapostolou ◽  
S. Agalaniotou

The current study presents the preliminary results of the mineralogical and geochemical characterization of the Sagiada mud (Prefecture of Thesprotia), which is considered as one of the most representative therapeutic mud occurrences in Greece. This work is part of a bigger project, conducted by IGME (Athens, Greece), for the characterization of the Greek therapeutic mud deposits. The mineralogical composition was determined using X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), optical microscopy and Scanning Electron Microscopy (SEM). The main mineral phases of the Sagiada mud are quartz, feldspars, clay minerals such as illite, kaolinite, chlorite and vermiculite, and calcite accompanied by minor phases such as halite and pyrite. Traces of muscovite and gypsum were also identified. Geochemical analyses were performed using X-Ray Fluorescence (XRF) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for the determination of major and trace element content, respectively. Compared to Spanish peloids and European floodplain sediments, the Sagiada mud reveals an analogue chemical composition.


2017 ◽  
Vol 54 (2) ◽  
pp. 69-85 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Kacey Garber ◽  
Jarek Trela

The Aycross Formation is the basal unit of the Absaroka Volcanic Supergroup in the southern Absaroka Range and consists of volcanic sandstone, mudstone, breccia, tuff and conglomerate. The Aycross was deposited during the waning stages of the Laramide Orogeny and the earliest phases of volcanism in the Absaroka Range. U-Pb geo-chronology using laser ablation multicollector inductively coupled plasma mass spectrometry LA-ICP-MS was performed on detrital zircons collected from an Aycross sandstone bed at Falls Campground east of Togwotee Pass. The detrital zircon age spectrum ranged fom ca 47 to 2856 Ma. Peak ages, as indicated by the zircon age probability density plot are ca. 51, 61, and 72 Ma. Tertiary zircons were the most numerous (n = 32), accounting for 42% of the zircon ages spectrum. Of these 19 are Eocene, and 13 are Paleocene, which are unusual ages in the Wyoming-Idaho-Montana area. Mesozoic zircons (n = 21) comprise 27% of the age spectrum and range in age from 68–126 Ma; all but one being late Cretaceous in age. No Paleozoic zircons are present. Proterozoic zircons range in age from 1196–2483 Ma, and also consist of 27% of the age spectrum. The maximum depositional age of the Aycross Formation is estimated to be 50.05 +/− 0.65 Ma based on weighted mean of the eight youngest grains. The Aycross Formation detrital zircon age spectrum is distinct from that of other 49–50 Ma rocks in northwest Wyoming, which include the Hominy Peak and Wapiti Formations and Crandall Conglomerate. The Aycross must have been derived largely from distal westerly source areas, which include the late Cretaceous and Paleocene Bitteroot Lobe of the Idaho Batholith. In contrast, the middle Eocene units further to the north must have been derived from erosion of the Archean basement-cored uplift of the Laramide Foreland in southwest Montana.


2019 ◽  
Vol 122 (4) ◽  
pp. 519-540
Author(s):  
T. Malobela ◽  
B. Mapani ◽  
M. Harris ◽  
D.H. Cornell ◽  
A. Karlsson ◽  
...  

Abstract Volcanic and sedimentary rocks of the Sinclair Supergroup occur in the Konkiep Terrane of Southern Namibia. Three volcanic and sedimentary cycles are recognised. In this work we describe and date volcanic rocks of the Barby Formation, a key unit in the Sinclair area. The coeval Spes Bona Syenite and the Tiras Granite Gneiss are also described and dated. The rock types in the Barby Formation are rhyolites, basaltic trachyandesites, trachybasalts and trachydacites as well as volcanoclastic rocks. The rocks are largely undeformed and partly altered by deuteric and contact metamorphic processes but not regionally metamorphosed. Our samples represent both the calc-alkaline and alkaline trends documented in previous work. U-Pb ion probe and laser ablation inductively coupled plasma (LA-ICP) multicollector mass spectrometer Lu-Hf microbeam analyses were made of zircon and baddeleyite grains from four samples. A felsic tuff sample from the base of the Barby Formation has a 207Pb/206Pb zircon age of 1214 ± 5 Ma (2σ). A rhomb porphyry sample from the top of an 8.5 km-thick stratigraphic section gives a 207Pb/206Pb baddeleyite age of 1217 ± 2 Ma. The Spes Bona Syenite which intrudes the top of the Barby Formation has a 207Pb/206Pb baddeleyite age of 1217 ± 3 Ma and an indistinguishable LA-ICP collision cell mass spectrometer Rb-Sr biotite isochron age of 1238 ± 20 Ma, showing that there was no >350°C regional metamorphic event. Multi-element diagrams for the calc-alkaline samples show a dominant signature of reworked crust which is superimposed on a possible subduction signature. However the alkaline samples contain clear subduction signatures which are not seen in the underlying 1.37 Ga Kumbis rhyolite. The Barby Formation samples and coeval Spes Bona Syenite have Lu-Hf crustal residence ages between 1682 and 1873 Ma, suggesting that both of these units formed from a mixture of juvenile mantle-derived and older crustal material. The Barby Formation is considered to have originated due to a subduction event which took place during the assembly of the Rodinia supercontinent. The duration of the Barby magmatic episode is constrained to a maximum 9 m.y. period between 1219 and 1210 Ma, and during this period the Konkiep Terrane was an active continental margin. The 1204 ± 9 Ma Tiras Granite Gneiss is slightly younger than the Barby Formation and intruded across the Lord Hills Shear Zone, which is the suture between the hardly metamorphosed Konkiep Terrane and the highly metamorphosed Grunau Terrane of the Namaqua-Natal Province. Its intrusion reflects the end of subduction-related volcanism, due to the collision of Namaqua terranes with the Konkiep Terrane.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hossein Azizi ◽  
Motohiro Tsuboi

In northwestern Iran, magmatic activity occurred during three main intervals: The Cretaceous, Eocene, and Miocene-Quaternary. The first two phases of magmatic activity are more consistent with arc-type magmatism on an active continental margin; whereas the last phase, which has calc-alkaline and alkaline affinities, shows more similarity to postcollisional magmatism. Magmatic belts are mostly situated in the northern and eastern parts of the Oshnavieh–Salmas–Khoy ophiolite belt (OSK-Ophiolite) in northwestern Iran. The OSK-Ophiolite is known as the Neotethys, an ocean remnant in northwestern Iran, and extends to eastern Turkey and surrounds the Van area. This configuration shows that the Van microplate and surrounding ocean have played an important role in the evolution of magmatic activity in northwestern Iran, eastern Turkey, and the Caucasus since the Cretaceous. The Van microplate is situated among the Arabian plate to the south, northwestern Iran to the east, and Armenia to the north. The subduction of the northern branch of the Neotethys oceanic lithosphere beneath southern Eurasia has been critical in flare-up magmatism in the southern Caucasus since the Late Cretaceous. Considering the Van area as a new microplate makes understanding the geodynamic evolution of this area easier than in the many tectonic models that have been suggested before. When regarding the Van microplate, the main suture zone, which is known as the Bitlis–Zagros zone, should be changed to the Zagros–Khoy–Sevan–Akera suture zone, which extends to the eastern and northern Van microplate and western Iran.


2021 ◽  
Author(s):  
J. L. Denholm ◽  
A. S. Stepanov ◽  
S. Meffre ◽  
R. S. Bottrill ◽  
J. M. Thompson

Abstract The island state of Tasmania is the most important tin producer in Australia. The spatial and genetic relationship between Tasmanian tin deposits and Devonian-Carboniferous granites, which intruded throughout the Tabberabberan orogeny, has long been understood. However, little geochronological data is available to link mineralization to nearby intrusions. In this study, we investigate the connection between 19 Tasmanian tin deposits and their potential source granites, using U-Pb cassiterite dating by laser ablation-inductively coupled plasma-mass spectrometry. Archean pegmatitic cassiterite was also characterized and used for the calibration of U-Pb ratios. Tin mineralization in Tasmania occurred between 391 ± 6.3 and 359 ± 7.8 Ma, which is coincident with most postorogenic granites of the Tabberabberan orogeny. In conjunction with the granite ages, cassiterite ages become younger from the east of the state to the west, and tin mineralization occurred over a protracted period spanning 32 m.y. Dating of several placer cassiterite samples produced unexpected results, such as the occurrence of 374 ± 4.7 Ma cassiterite on eastern King Island, an area known only to contain the 350 Ma Grassy granite, suggesting a distant provenance. Tasmanian cassiterite rarely shows evidence of Pb loss; however, some analyses are characterized by elevated Th and U, likely caused by microinclusions such as monazite, which may have a detrimental effect on cassiterite U-Pb dating. This study demonstrates the utility of cassiterite dating for understanding the origin of tin deposits in complex terrains with protracted periods of tin mineralization.


2019 ◽  
Vol 114 (7) ◽  
pp. 1285-1300 ◽  
Author(s):  
Okan Delibaş ◽  
Robert Moritz ◽  
David Selby ◽  
Deniz Göç ◽  
Mustafa Kemal Revan

Abstract Four porphyry Cu-Mo systems were investigated by Re-Os molybdenite geochronology to constrain their timing with respect to the geodynamic and magmatic evolution of the eastern Pontides, Turkey. Molybdenite from the Ispir-Ulutaş deposit yielded an Re-Os age of 131.0 ± 0.7 Ma, which is consistent with Early Cretaceous U-Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon ages of local calc-alkaline intrusions. It demonstrates that porphyry deposits were already formed during Early Cretaceous subduction of the Neotethys along the eastern Pontides, and that they can be correlated with porphyry Cu events in the adjacent Lesser Caucasus. Molybdenite Re-Os ages of 76.0 ± 0.4 and 75.7 ± 0.4 Ma at the Elbeyli prospect and 77.2 ± 1.0 Ma at the Emeksen prospect overlap with U-Pb LA-ICP-MS zircon ages of shoshonitic to high-K calc-alkaline intrusions in the region, which were emplaced during Late Cretaceous Neotethys subduction. A 50.7 ± 0.3 Ma molybdenite Re-Os age at the Güzelyayla deposit confirms porphyry Cu-Mo emplacement coeval with Eocene postcollisional, calc-alkaline adakitic magmatism of the eastern Pontides. An electron microprobe study of molybdenite samples, supplemented by data obtained during Re-Os dating, shows that the Eocene Güzelyayla deposit and the Late Cretaceous Emeksen prospect have the highest Re enrichment. Postcollisional melting of a thickened mafic lower continental crust and melting of a metasomatized lithospheric mantle with little to no interaction with upper crustal rocks may explain the Re enrichment at Güzelyayla and Emeksen, respectively.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1012
Author(s):  
Liu Xiqiang ◽  
Zhang Hui ◽  
Tang Yong ◽  
Liu Yunlong

Phosphorite-type rare earth deposits, which are one of the important types of rare earth elements (REE) ore deposits, have attracted increasing attention because of the extreme enrichments in heavy rare earth elements (HREE), including Yttrium (Y). In this study, in situ geochemical analyses of apatite grains from Zhijin phosphorites were conducted using electron probe microanalysis (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Based on EPMA mapping analysis, we show that rare earth elements and Yttrium (REY) entering into the crystal lattice by isomorphism rather than by inclusions of REY-bearing accessory minerals. The post-Archean Australian Shales (PAAS)-normalized REY patterns of the apatite grains are characterized by hat-shaped MREE-enriched patterns. We interpret that this pattern may reflect the REE distribution of seawater at that time. We propose that in a local, reducing environment, dramatically increased the concentration of REY in seawater, and resulted in the MREE-enriched patterns in the ancient ocean. The main mechanism for the genesis of the Zhijin phosphorite deposit is the apatite crystallizes during the mixing process of REY- and P-rich fluid and oxidizing seawater.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 566 ◽  
Author(s):  
Sang-Gun No ◽  
Maeng-Eon Park

High-grade Zr–Nb–Y–rare earth element (REE) mineralization occurs as zircon–allanite–magnetite bands in layered Paleozoic alkali rocks which intruded the Gyemyeongsan Formation of the Chungju unit, South Korea. The mineralization period and genesis have been controversial. We investigated the petrological and mineralogical properties of the newly discovered zircon–allanite–magnetite bands and the geochronological properties of zircon within the bands in the alkali granite. We analyzed the zircon with laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). The repeated quartz–feldspar-rich layers in the alkali granite show grain-sized grading textures and equilibrium igneous textures. Magnetite and allanite grains in these layers varied in size and exhibited isolated, aggregated, and coalesced textures. In addition, the settling texture of zircon grains onto the other minerals was observed. These observations could reasonably be explained by the process of gravitational accumulation during the solidification of magma. The 206Pb/238U ages obtained from zircon from the zircon–allanite–magnetite-rich layer and the alkali aplite were 331.1 ± 1.5 Ma and 334.5 ± 8.9 Ma, respectively. Therefore, we suggest that the Zr–Y–Nb–REE mineralization developed in the alkali rocks and the Gyemyeongsan Formation in the Chungju unit were formed by fractional crystallization of alkali magma and hydrothermal fluids which evolved from alkali magma fractional crystallization, respectively. The correlation between alkaline granite and REE mineralization found in this study could be used as a tool for REE exploration in other regions where the permeable geological unit is intruded by the alkali granite.


Sign in / Sign up

Export Citation Format

Share Document