The nitrogen cycle in the Broadbalk Wheat Experiment: recovery and losses of 15N-labelled fertilizer applied in spring and inputs of nitrogen from the atmosphere

1986 ◽  
Vol 107 (3) ◽  
pp. 591-609 ◽  
Author(s):  
D. S. Powlson ◽  
The Late G. Pruden ◽  
A. E. Johnston ◽  
D. S. Jenkinson

SUMMARY15N-labelled nitrogen fertilizer (containing equal quantities of ammonium-N and nitrate-N) was applied in 4 consecutive years (1980–3) to different microplots located within the Broadbalk Wheat Experiment at Rothamsted, an experiment which has carried winter wheat continuously since 1843. Plots receiving 48, 96, 144 and 192 kg N/ha every year were given labelled fertilizer in mid-April at (nominally) these rates.Grain yields ranged from 1–2 t/ha on plots given no N fertilizer since 1843 to a maximum of 7·3 t/ha with 196 kg N/ha. On plots given adequate P and K fertilizer, between 51 and 68% of the labelled N was recovered in the above-ground crop; only about 40% was recovered where P deficiency limited crop growth. In 1981 fertilizerderived N retained in soil (0–70 cm) at harvest increased from 16 kg/ha, where 48 kg/ha was applied, to 38 kg/ha, where 192 kg/ha was applied. More than 80% of this retained N was in the plough layer (0–23 cm).Overall recovery of fertilizer N in crop plus soil ranged from 70 % to more than 90 % over the 4 years of the experiments. Losses of N were larger in years when spring rainfall was above average and when soil moisture deficits shortly after application were small.Crop uptake of unlabelled N derived from soil increased from 28 kg N/ha on the plot given no fertilizer N to 67 kg N/ha on the plot given 144 kg N/ha. The extra uptake of unlabelled N was mainly, if not entirely, due to greater mineralization of soil N in the plots that had been given N fertilizer for many years. Presumably fertilizer N increased the annual return of crop residues, which in turn led to an accumulation of mineralizable organic N, although there was only a small increase in total soil N content.Wheat given NH4-N grew less well and took up less N than wheat given N08-N in the relatively dry spring of 1980; there was little difference between the two forms of N in the wetter spring of 1981. In both years more fertilizer N was retained in the soil at harvest when fertilizer was applied as NH4-N than as N03-N.The N content of the soil in several plots of the experiment has been constant for many years, so that the annual removal of N is balanced by the annual input. A nitrogen balance for the plot given 144 kg fertilizer N/ha showed an average annual input of non-fertilizer N of at least 48 kg/ha, of which N in rain and seed accounts for about 14 kg/ha. The remainder may come from biological fixation of atmospheric N2 by blue-green algae, or from dry deposition of oxides of nitrogen and/or NH3 onto crop and soil. The overall annual loss of N from the crop–soil system on this particular plot was 54 kg N/ha per year, 28% of the total annual input from fertilizer and nonfertilizer N.

1996 ◽  
Vol 127 (3) ◽  
pp. 347-363 ◽  
Author(s):  
M. J. Glendining ◽  
D. S. Powlson ◽  
P. R. Poulton ◽  
N. J. Bradbury ◽  
D. Palazzo ◽  
...  

SUMMARYThe Broadbalk Wheat Experiment at Rothamsted (UK) includes plots given the same annual applications of inorganic nitrogen (N) fertilizer each year since 1852 (48, 96 and 144 kg N/ha, termed N1 N2 and N3 respectively). These very long-term N treatments have increased total soil N content, relative to the plot never receiving fertilizer N (N0), due to the greater return of organic N to the soil in roots, root exudates, stubble, etc (the straw is not incorporated). The application of 144 kg N/ha for 135 years has increased total soil N content by 21%, or 570 kg/ha (0–23 cm). Other plots given smaller applications of N for the same time show smaller increases; these differences were established within 30 years. Increases in total soil N content have been detected after 20 years in the plot given 192 kg N/ha since 1968 (N4).There was a proportionally greater increase in N mineralization. Crop uptake of mineralized N was typically 12–30 kg N/ha greater from the N3 and N4 treatments than the uptake of c. 30 kg N/ha from the N0 treatment. Results from laboratory incubations show the importance of recently added residues (roots, stubble, etc) on N mineralization. In short-term (2–3 week) incubations, with soil sampled at harvest, N mineralization was up to 60% greater from the N3 treatment than from N0. In long-term incubations, or in soil without recently added residues, differences between long-term fertilizer treatments were much less marked. Inputs of organic N to the soil from weeds (principally Equisetum arvense L.) to the N0–N2 plots over the last few years may have partially obscured any underlying differences in mineralization.The long-term fertilizer treatments appeared to have had no effect on soil microbial biomass N or carbon (C) content, but have increased the specific mineralization rate of the biomass (defined as N mineralized per unit of biomass).Greater N mineralization will also increase losses of N from the system, via leaching and gaseous emissions. In December 1988 the N3 and N4 plots contained respectively 14 and 23 kg/ha more inorganic N in the profile (0–100 cm) than the N0 plot, due to greater N mineralization. These small differences are important as it only requires 23 kg N/ha to be leached from Broadbalk to increase the nitrate concentration of percolating water above the 1980 EC Drinking Water Quality Directive limit of 11·3mgN/l.The use of fertilizer N has increased N mineralization due to the build-up of soil organic N. In addition, much of the organic N in Broadbalk topsoil is now derived from fertilizer N. A computer model of N mineralization on Broadbalk estimated that after applying 144 kg N/ha for 140 years, up to half of the N mineralized each year was originally derived from fertilizer N.In the short-term, the amount of fertilizer N applied usually has little direct effect on losses of N over winter. In most years little fertilizer-derived N remains in Broadbalk soil in inorganic form at harvest from applications of up to 192 kg N/ha. However, in two very dry years (1989 and 1990) large inorganic N residues remained at harvest where 144 and 192 kg N/ha had been applied, even though the crop continued to respond to fertilizer N, up to at least 240 kg N/ha.


1999 ◽  
Vol 79 (2) ◽  
pp. 277-286 ◽  
Author(s):  
P. A. Bowen ◽  
B. J. Zebarth ◽  
P. M. A. Toivonen

The effects of six rates of N fertilization (0, 125, 250, 375, 500 and 625 kg N ha−1) on the dynamics of N utilization relative to extractable inorganic N in the soil profile were determined for broccoli in three growing seasons. The amount of pre-existing extractable inorganic N in the soil was lowest for the spring planting, followed by the early-summer then late-summer plantings. During the first 2 wk after transplanting, plant dry-matter (DM) and N accumulation rates were low, and because of the mineralization of soil organic N the extractable soil inorganic N increased over that added as fertilizer, especially in the top 30 cm. From 4 wk after transplanting until harvest, DM and N accumulation in the plants was rapid and corresponded to a rapid depletion of extractable inorganic N from the soil. At high N-fertilization rates, leaf and stem DM and N accumulations at harvest were similar among the three plantings. However, the rates of accumulation in the two summer plantings were higher before and lower after inflorescence initiation than those in the spring planting. Under N treatments of 0 and 125 kg ha−1, total N in leaf tissue and the rate of leaf DM accumulation decreased while inflorescences developed. There was little extractable inorganic soil-N during inflorescence development in plots receiving no N fertilizer, yet inflorescence dry weights and N contents were ≥50 and ≥30%, respectively, of the maxima achieved with N fertilization. These results indicate that substantial N is translocated from leaves to support broccoli inflorescence growth under conditions of low soil-N availability. Key words: N translocation, N fertilizer


2012 ◽  
Vol 496 ◽  
pp. 502-506
Author(s):  
Hui Jie Lü ◽  
Hong Bo He ◽  
Xu Dong Zhang

Fertilizer applications to soil are widely known to be the most important anthropogenic sources to influence soil N turnover in agricultural ecosystems. More information is required on the relationships between soil organic N (SON) forms in order to predict the maintenance, transformation and stability of soil N. Accordingly, 15N-labeled (NH4)2SO4 (totally 200 kg N/ha) was applied to a maize crop throughout the entire growing period to investigate the distribution and the dynamics of fertilizer-derived N in hydrolyzable-NH3 fraction by measuring the labeled N in them. The accumulation of 15N in hydrolyzable-NH3 fraction was time-dependent although the total N concentration changed only slightly. The transformation of the residual fertilizer N to hydrolyzable-NH3-15N was maximal during the silking and grain filling stages, suggesting the fertilizer N was immobilized at an early stage during the growing period. The rapid decrease of 15N in hydrolyzable-NH3 pool indicated that hydrolyzable-NH3-15N was a temporary pool for fertilizer N retention and was able to release fertilizer N for uptake by the current crop


1999 ◽  
Vol 133 (2) ◽  
pp. 125-130 ◽  
Author(s):  
R. J. HAYNES

15N-labelled fertilizer urea was applied at increasing rates (0–200 kg N/ha), in spring, to winter wheat crops in the Canterbury region of New Zealand in three successive seasons (1993/94, 1994/95 and 1995/96). Recovery of fertilizer N by the crop (grain, chaff, straw and roots) ranged from 43–58% (mean 48%). The quantity of fertilizer N retained in the soil (0–40 cm), at harvest, ranged from 26–42%. Of the labelled N present in the soil, over 95% was present in organic form and 60–80% was retained in the surface 0–10 cm layer. Since soil organic matter represents a substantial sink for fertilizer N there is a need to characterize the nature of this organic pool of N more fully. The quantity of inorganic N present in the soil profile at harvest ranged from 20–46 kg N/ha and labelled fertilizer-derived N contributed less than 16% (mean 9·2%) to this inorganic pool. Loss of fertilizer N from the crop/soil system (i.e., labelled N not recovered in the crop or soil at harvest) varied from 12–26% (mean 18%). Losses were attributed mainly to denitrification since conditions were not conducive for ammonia volatilization or leaching of nitrate. In agreement with European research, it was concluded that almost all of the N at risk of leaching over the winter originates from mineralization of soil organic N and not from unused fertilizer-N applied in spring.


2008 ◽  
Vol 88 (5) ◽  
pp. 837-848 ◽  
Author(s):  
S J Steckler ◽  
D J Pennock ◽  
F L Walley

The Illinois soil N test (ISNT) has been used to distinguish between soils that are responsive and non-responsive to fertilizer N in Illinois. We examined the suitability of this test, together with more traditional measures of soil fertility, including spring nitrate-N and soil organic carbon (SOC), for predicting yield and N fertilizer response of wheat (Triticum aestivum) on hummocky landscapes in Saskatchewan. The relationship between ISNT-N and wheat yield and fertilizer N response was assessed using data and soils previously collected for a variable-rate fertilizer study. Soils were re-analyzed for ISNT-N. Our goal was to determine if ISNT-N could be used to improve the prediction of crop yields. Although ISNT-N was correlated with both unfertilized wheat yield (r = 0.467, P = 0.01) and fertilizer N response (r = -0.671, P = 0.01) when data from all study sites were combined, correlations varied according to landscape position and site. Stronger correlations between nitrate-N and both unfertilized wheat yield (r = 0.721, P = 0.01) and fertilizer N response (r = -0.690, P = 0.01) indicated that ISNT-N offered no advantage over nitrate-N. Although both tests broadly discriminated between sites with high or low N fertility, few relationships were detected on a point-by-point basis within a field. Stepwise regression equations predicting yield and yield response did not include ISNT-N, due in part to the high degree of collinearity between ISNT-N and other variables such as SOC, suggesting that ISNT-N alone was not a key indicator of soil N supply. Key words: Illinois soil nitrogen test, potentially available N, soil N, fertilizer N recommendations


1991 ◽  
Vol 117 (2) ◽  
pp. 241-249 ◽  
Author(s):  
T. M. Addiscott ◽  
R. J. Darby

SUMMARYOptimum applications of N fertilizer, Nopt have been related successfully to the amount of mineral N in the soil, Nmin in some parts of Europe but not always in the UK. If there is a body of mineral N, QN, that ultimately lessens the need for N fertilizer, it will not remain constant in its amount or its position. Mineralization will add to QN, while the nitrate component of QN will be leached downwards.Also, part of QN will be taken up into the crop where it will continue to lessen the need for fertilizer N but will be safe from leaching. A computer model was used to simulate these processes for 23 experiments, covering five sites and five years, in which N opt had been estimated. From these simulations we derived trial values of QN that took account of mineral N to a series of depths on a series of dates. For each date we used the trial values to find the depth for which Nopt was best correlated with QN andassumed that this was the depth, dL, of the lower boundary of QN on that date. Thus dL was a collective value for all 23 experiments. The value of dLincreased throughout the winter and the spring and was very closely related to the cumulative average drainage through 0·5 m soil at Rothamsted. By 15 April, dL, was 1·66 m, a depth that was compatible with observations by others that winter wheat can remove mineral N to a depth of at least 1·5 m. We inferred two likely reasons why Nmin may fail as a predictor of Nopt in the UK: insufficient depth of sampling, and too wide a spread of sampling dates. The values of Nopt were shown to be related satisfactorily to the values of QN computed, without any measurements of mineral N, for appropriate depths on single dates.


1998 ◽  
Vol 131 (4) ◽  
pp. 395-407 ◽  
Author(s):  
A. G. CHALMERS ◽  
C. J. DYER ◽  
R. SYLVESTER-BRADLEY

Amounts of spring nitrogen (N) fertilizer (0–240 kg/ha), combined with three timing treatments (single, divided early or divided late), were tested at 14 sites in England and Wales between 1984 and 1988 to determine the optimum fertilizer N requirement for winter oats. The trials were superimposed on commercial crops of the cultivars Pennal (9 sites) or Peniarth (5 sites). Optimum amounts of N ranged from nil to 202 kg/ha (mean 119) and optimum yields varied between 5·8 and 9·9 t/ha (mean 7·3). Much (c. 60%) of the inter-site variation in N optimum was explained by differences in soil N supply, as indicated by N offtake in the grain at nil applied N. Mean yield differences between single and early (+0·08 t/ha) or late (−0·04 t/ha) divided dressings were slight, although significant (P<0·05) but inconsistent yield effects were obtained from early N at two sites and late N at three sites.Lodging occurred at 11 of the 12 sites where lodging scores were recorded and always increased significantly (P<0·05) with applied N. The amount of crop lodging at N optimum was, on an area basis, <50% at nine of the sites. The overall extent of site lodging was also influenced by soil N fertility and hence inversely related to N optimum. However, multiple regression, using site lodging as well as soil N supply, only accounted for slightly more (65%) of the variation in N optimum, which suggests that lodging was not a major limiting factor. Lodging was unexpectedly less from early N (mean 43%), but more from late N (53%) divided dressings, compared with a single N dressing (49%). Early N reduced lodging significantly (P<0·05) at four sites, although the actual reduction was only large at one site where early N also increased yield significantly (+0·57 t/ha).Grain N concentrations increased significantly (P<0·05) with applied N, on average by 0·12% per 40 kg/ha N increment. Timing effects on grain N concentration were very small, with mean values of 1·94, 1·91 and 1·96%N respectively from single, early and late divided dressings. Apparent recovery in grain of fertilizer N at the optimum amount ranged from 13 to 57% (mean 37), with better N recovery at the more yield-responsive sites. Changes in mean grain weight due to the amount and timing of fertilizer N were small, with an average reduction of 0·6 mg/grain per 40 kg/ha N applied. The adverse effects of N fertilizer on grain quality were slight and unlikely to have commercial significance. The agronomic implications of these results on the N fertilization of winter oats are discussed.


1984 ◽  
Vol 64 (1) ◽  
pp. 1-8 ◽  
Author(s):  
D. A. RENNIE ◽  
M. HEIMO

Cool soil temperature regimes with initial soil temperatures of 5 °C rising to 20 °C at the heading stage reduced the rate of growth of barley by approximately one-third compared to 15–25 °C but did not change the barley yield or the fate of the applied fertilizer N in the soil biomass, roots, or tops of the plant or that lost by denitrification. The primary isotope data, % Ndff or ’A’ values remained relatively constant irrespective of whether the straw was placed on the surface or mixed throughout the soil. In contrast, the nitrogen balance data verified that fertilizer N loss, presumably due to denitrification, was as high as 35% in certain treatments, and further that up to 40% of the added fertilizer N was immobilized where the straw was uniformly mixed in the soil. The nitrogen balance data were used to correct the original rate of fertilizer N application. When this was done, A values calculated on the basis of the revised rates of application showed that the amount of soil N which was denitrified or immobilized was approximately double that of the applied fertilizer N. Thus, it is possible where a N balance is included in an investigation to quantitatively assess the effect of management practices on available soil N. It is further concluded that differential immobilization or denitrification of the 15N fertilizer standard may invalidate yield-dependent isotope-derived data, such as dinitrogen fixation unless nitrogen balance data are available to permit the appropriate corrections to be made. Key words: Zero till, N-cycle, temperature, crop residues, barley


2005 ◽  
Vol 85 (3) ◽  
pp. 377-386 ◽  
Author(s):  
B J Zebarth ◽  
Y. Leclerc ◽  
G. Moreau ◽  
J B Sanderson ◽  
W J Arsenault ◽  
...  

Soil N supply is an important contributor of N to crop production; however, there is a lack of practical methods for routine estimation of soil N supply under field conditions. This study evaluated sampling just prior to topkill of whole potato plants that received no fertilizer N as a field bioassay of soil N supply. Three experiments were performed. In exp. 1, field trials were conducted to test if P and K fertilization, with no N fertilization, influenced plant biomass and N accumulation at topkill. In exp. 2, plant N accumulation at topkill in unfertilized plots was compared with mineral N accumulation in vegetation-free plots. In exp. 3, estimates of soil N supply were obtained from 56 sites from 1999 to 2003 using a survey approach where plant N accumulation at topkill, and soil mineral N content to 30-cm depth at planting and at tuber harvest were measured. Application of P and K fertilizer had no significant effect on plant N accumulation in two trials, and resulted in a small increase in plant N accumulation in a third trial. Zero fertilizer plots, which can be more readily established in commercial potato fields, can therefore be used instead of zero fertilizer N plots to estimate soil N supply. In exp. 2, estimates of soil N supply were generally comparable between plant N accumulation at topkill and maximum soil NO3-N accumulation in vegetation-free plots; therefore, the plant bioassay approach is a valid means of estimation of plant available soil N supply. Plant N accumulation at topkill in exp. 3 averaged 86 kg N ha-1, and ranged from 26 to 162 kg N ha-1. Plant N accumulation was higher for sites with a preceding forage crop compared with a preceding cereal or potato crop. Plant N accumulation was generally higher in years with warmer growing season temperatures. Soil NO3-N content at harvest in exp. 3 was less than 20 kg N ha-1, indicating that residual soil mineral N content was low at the time of plant N accumulation measurement. Soil NO3-N content at planting was generally small relative to plant N accumulation, indicating that soil N supply in this region is controlled primarily by growing season soil N mineralization. Use of a plant bioassay approach provides a practical means to quantify climate, soil and management effects on plant available soil N supply in potato production. Key words: Solanum tuberosum, nitrate, ammonium, N mineralization, plant N accumulation


1995 ◽  
Vol 75 (2) ◽  
pp. 381-386
Author(s):  
A. J. Leyshon ◽  
C. A. Campbell

Two nitrogen (N) fertilizer response trials were superimposed, in 2 consecutive years, on a set of large plots of irrigated bromegrass (Bromus inermis Leyss.) that had been fertilized with different rates of fertilizer N up to 200 kg ha−1 for the previous 9 and 10 yr, respectively. During those years, forage dry matter responded in direct proportion to fertilizer N rate. In the subsequent two trials we determined the residual effects of the prior fertilizer treatments on the response of bromegrass to new applications of N fertilizer, and the N rate required to achieve maximum yields. The yield response of the bromegrass to the applied N was a function of prior fertilizer history and the moisture conditions. In the first trial, under good moisture conditions, the previously unfertilized plots had maximum yields at a N rate of 382 kg N ha−1; yields declined at higher rates. Responses of previously fertilized plots to additional N were linear. The y-intercepts (where no N was applied) were higher for plots that had been fertilized at higher N rates in the initial 9-yr study while the slopes of the yield responses were less steep. In contrast, in the second trial, conducted in a year when irrigation water was restricted, all forage yield responses to N fertilizer were curvilinear, Y-intercepts were again higher on plots that had been fertilized at higher N rates in previous years. In this case, however, the slopes of the N responses became progressively steeper with increasing N rate while increasingly larger quadratic coefficients resulted in maximum yields being attained at progressively lower N rates. Nevertheless, maximum yields were higher than those of the previously unfertilized plots. Changes in the response curves were attributed to alterations in the soil organic N and to a lesser extent, to changes in the capability of the bromegrass to respond to fertilizer N. Soil tests found no carry-over of fertilizer N as residual inorganic N but the initial potential rate of mineralization (N0k) reflected changes in the quality of soil organic matter influencing the response to N fertilizer applications. The results suggest the need for soil testing laboratories to take into account the prior fertilizer history of the grass stand when developing recommended N fertilizer rates for irrigated bromegrass. Key words: Bromegrass, N fertilization, residual N, mineralizable N


Sign in / Sign up

Export Citation Format

Share Document