Fate and recovery of 15N-labelled fertilizer urea applied to winter wheat in spring in the Canterbury region of New Zealand

1999 ◽  
Vol 133 (2) ◽  
pp. 125-130 ◽  
Author(s):  
R. J. HAYNES

15N-labelled fertilizer urea was applied at increasing rates (0–200 kg N/ha), in spring, to winter wheat crops in the Canterbury region of New Zealand in three successive seasons (1993/94, 1994/95 and 1995/96). Recovery of fertilizer N by the crop (grain, chaff, straw and roots) ranged from 43–58% (mean 48%). The quantity of fertilizer N retained in the soil (0–40 cm), at harvest, ranged from 26–42%. Of the labelled N present in the soil, over 95% was present in organic form and 60–80% was retained in the surface 0–10 cm layer. Since soil organic matter represents a substantial sink for fertilizer N there is a need to characterize the nature of this organic pool of N more fully. The quantity of inorganic N present in the soil profile at harvest ranged from 20–46 kg N/ha and labelled fertilizer-derived N contributed less than 16% (mean 9·2%) to this inorganic pool. Loss of fertilizer N from the crop/soil system (i.e., labelled N not recovered in the crop or soil at harvest) varied from 12–26% (mean 18%). Losses were attributed mainly to denitrification since conditions were not conducive for ammonia volatilization or leaching of nitrate. In agreement with European research, it was concluded that almost all of the N at risk of leaching over the winter originates from mineralization of soil organic N and not from unused fertilizer-N applied in spring.

1992 ◽  
Vol 118 (1) ◽  
pp. 83-100 ◽  
Author(s):  
D. S. Powlson ◽  
P. B. S. Hart ◽  
P. R. Poulton ◽  
A. E. Johnston ◽  
D. S. Jenkinson

SUMMARY15N-labelled fertilizer was applied, in spring, to winter wheat crops in nine experiments in eastern England over a period of 4 years. Five were on Batcombe Series silty clay loam, two on Beccles Series sandy clay loam (with a mole-drained clay subsoil) and two on Cottenham Series sandy loam. In three of the experiments, different rates of fertilizer N were applied (up to 234 kg N/ha); in the others, a single rate (between 140 and 230 kg/ha) was used.Recovery of fertilizer N in the above-ground crop (grain, chaff, straw and stubble) ranged from 46 to 87% (mean 68%). The quantity of fertilizer N retained in the soil at harvest was remarkably constant between different experiments, averaging 18% where labelled N was applied as 15NH415NO3, but less (7–14%) where K16NO3 was applied. Of the labelled N present in soil to a depth of 70 cm, 84–88% was within the cultivated layer (0–23 cm).L70 = 5(± 1 63) + 0·264(±00352) R3accounted for 73% of the variation in the data where: L70 = percentage loss of fertilizer N from the crop: soil system, defined as percentage of labelled N not recovered in crop or in soil to a depth of 70 cm at the time of harvest; R3 = rainfall (in mm) in the 3 weeks following application of N fertilizer.There was a tendency for percentage loss of fertilizer N to be greater when a quantity of N in excess of that required for maximum grain yield was applied. However, a multiple regression relating loss both to rainfall and to quantity of N applied accounted for no more variance than the regression involving rainfall alone. In one experiment, early and late sowing were compared on the first wheat crop that followed oats. The loss of N from the early-sown crop, given fertilizer N late in spring, was only 4% compared with 26 % from the later-sown crop given N at the same time, so that sowing date had a marked effect on the loss of spring-applied fertilizer N.Uptake of unlabelled N, derived from mineralization of organic N in soil, autumn-applied N (where given) and from atmospheric inputs, was < 30 kg/ha on a low organic matter (0·08% total N) sandy soil but > 130 kg/ha when wheat followed potatoes or beans on soil containing c. 0·15 % total N. Unlabelled N accounted for 20–50% of the total N content of fertilized crops at harvest. About 50% of this unlabelled N had already been taken up by the time of fertilizer application in spring and the final quantity was closely correlated with the amount present in the crop at this time. Applications of labelled fertilizer N tended to increase uptake of unlabelled N by 10–20 kg/ha, compared to controls receiving no N fertilizer. This was probably due to pool substitution, i.e. labelled inorganic N standing proxy for unlabelled inorganic N that would otherwise have been immobilized or denitrified.


1997 ◽  
Vol 129 (2) ◽  
pp. 125-154 ◽  
Author(s):  
A. J. MACDONALD ◽  
P. R. POULTON ◽  
D. S. POWLSON ◽  
D. S. JENKINSON

15N-labelled fertilizer was applied in spring to winter wheat, winter oilseed rape, potatoes, sugarbeet and spring beans in field experiments done in 1987 and 1988 in SE England on four contrasting soil types – a silty clay loam, a chalky loam, a sandy loam and a heavy clay. The 15N-labelled fertilizers were applied at recommended rates; for oilseed rape, a two-thirds rate was also tested. Whole-crop recoveries of labelled nitrogen averaged 52% for winter wheat, 45% for oilseed rape, 61% for potatoes and 61% for sugarbeet. Spring beans, which received only 2·5 kg ha−1 of labelled N, recovered 26%. Removals of 15N-labelled fertilizer N in the harvested products were rather less, averaging 32, 25, 49, 27 and 13% in wheat grain, rape seed, potato tubers, beet root and bean grain, respectively.Crop residues were either baled and removed, as with wheat and rape straw, or were flailed or ‘topped’ and left on the soil surface, as was the case with potato tops and sugarbeet tops. Wheat stubble and rape stubble, together with leaf litter and weeds, were incorporated after harvest. The ploughing in of crop residues returned 4–35% of the original nitrogen fertilizer application to the soil, in addition to that which already remained at harvest, which averaged 24, 29 and 25% of that applied to winter wheat, oilseed rape and sugarbeet respectively. Less remained at harvest after potatoes (c. 21%) and more after spring beans (c. 49%). Most of the labelled residue remained in the top-soil (0–23cm) layer.15N-labelled fertilizer unaccounted for in crop and soil (0–100 cm) at harvest of winter wheat, oilseed rape, potatoes, sugarbeet and spring beans averaged 23, 25, 19, 14 and 26% of that applied, respectively. Gaseous losses of fertilizer N by denitrification were probably greater following applications to winter wheat and oilseed rape, where the N was applied earlier (and the soils were wetter) than with potatoes and sugarbeet. Consequently, it may well be advantageous to delay the application of fertilizer N to winter wheat and oilseed rape if the soil is wet.Total inorganic N (labelled and unlabelled) in soils (0–100 cm) following harvest of potatoes given 15N-labelled fertilizer in spring averaged 70 kg N ha−1 and was often greater than after the corresponding crops of winter wheat and oilseed rape, which averaged 53 kg N ha−1 and 49 kg N ha−1, respectively. On average, 91 kg ha−1 of inorganic N was found in soil (0–100 cm) following spring beans. Least inorganic N remained in the soil following sugarbeet, averaging only 19 kg N ha−1. The risk of nitrate leaching in the following winter, based on that which remained in the soil at harvest, ranked in decreasing order, was: spring beans=potatoes>oilseed rape=winter wheat>sugarbeet. On average, only 2·9% of the labelled fertilizer applied to winter wheat and oilseed rape remained in the soil (0–100 cm) as inorganic N (NO−3+NH+4) at harvest; with sugarbeet only 1·1% remained. In most cases c. 10% of the mineral N present in the soil at this time was derived from the nitrogen fertilizer applied to arable crops in spring. However, substantially more (c. 21%) was derived from fertilizer following harvest of winter wheat infected with take-all (Gaeumannomyces graminis var. tritici) and after potatoes. With winter wheat and sugarbeet, withholding fertilizer N had little effect on the total quantity of inorganic N present in the soil profile at harvest, but with oilseed rape and potatoes there was a decrease of, on average, 38 and 50%, respectively. A decrease in the amount of nitrogen applied to winter wheat and sugarbeet in spring would therefore not significantly decrease the quantity of nitrate at risk to leaching during the following autumn and winter, but may be more effective with rape and potatoes. However, if wheat growth is severely impaired by take-all, significant amounts of fertilizer-derived nitrate will remain in the soil at harvest, at risk to leaching.


1994 ◽  
Vol 122 (1) ◽  
pp. 73-89 ◽  
Author(s):  
A. E. Johnston ◽  
J. McEwen ◽  
P. W. Lane ◽  
M. V. Hewitt ◽  
P. R. Poulton ◽  
...  

SUMMARYThe largest yields of wheat and potatoes came from the combination of longer ley plus optimum fertilizer N but yields of winter beans were decreased where N had been given to the previous crops. Without fertilizer N, two year old leys significantly increased yields compared to one year leys and the effect of longer leys was small except for the first wheat, when grain yields were large and plateaued after the three year ley.Exponential response curves were fitted to the wheat yields and an exponential plus linear trend to the potato yields after each of the leys. Maximum yields and maximum economic yields and their associated N dressings were then estimated. Maximum economic yields of wheat in 1987 ranged from 811 to 914 t/ha grain and the fertilizer N needed declined from 174 kg/ha after the one year ley to 48 kg/ha after the six year ley. For potatoes in 1988, yields ranged from 63 to 71 t/ha tubers but the N required (137–150 kg/ha) varied little with ley age. For winter wheat, in 1989 yields ranged from only 5·51 to 6·99 t/ha grain, because of drought but, as with the potatoes, the N required (203–218 kg/ha) varied little. For each crop the six individual N response curves could be shifted to bring them into coincidence, and the benefits of the ley estimated in terms of a quantity of fertilizer N applied in spring (horizontal shift) and effects other than spring N (vertical shift). The spring N effects relative to the one year ley varied with ley age; for the first wheat the range was from 6 to 126 kg N/ha for the two to six year leys respectively. Spring N effects were negligible, however, for potatoes (average 6 kg/ha) and also for wheat in the third year (6 kg/ha). Benefits other than those which could be ascribed to spring N increased yield of the first wheat, on average, by 0·94 t/ha grain for the two to five year leys; for potatoes they ranged from 3·5 to 8·1 t/ha tubers for the three to six year leys; for the third crop wheat they ranged from 0·86 to 1·49 t/ha grain for the three to six year leys.On average, the first wheat recovered only 34% of the applied fertilizer N whilst potatoes and the following wheat recovered 55 and 56% respectively. There was a benefit from the longer leys which affected the efficiency with which fertilizer N was used.Increasing ley age up to five years increased total soil carbon by a maximum of 0·17%C; 18% of the carbon content of the soil in the one year ley plots. This small increase in soil organic matter provided up to 230 kg/ha mineral N in the first autumn after ploughing. Between 17 October 1986 and 27 April 1987 the average loss of NO3-N from soils following three to six year leys was equivalent to 202 kg N/ha, whilst the average uptake of N by 11 May in the above-ground wheat was only 88 kg/ha; the net loss was 114 kg N/ha. A computer simulation, which included mineralization of organic N during this period together with N uptake and nitrate leaching losses, computed a loss of 250 kg N/ha following the six year ley, and this would have given 400 mg NO3/1 in the 275 mm through drainage that winter.


1986 ◽  
Vol 107 (3) ◽  
pp. 591-609 ◽  
Author(s):  
D. S. Powlson ◽  
The Late G. Pruden ◽  
A. E. Johnston ◽  
D. S. Jenkinson

SUMMARY15N-labelled nitrogen fertilizer (containing equal quantities of ammonium-N and nitrate-N) was applied in 4 consecutive years (1980–3) to different microplots located within the Broadbalk Wheat Experiment at Rothamsted, an experiment which has carried winter wheat continuously since 1843. Plots receiving 48, 96, 144 and 192 kg N/ha every year were given labelled fertilizer in mid-April at (nominally) these rates.Grain yields ranged from 1–2 t/ha on plots given no N fertilizer since 1843 to a maximum of 7·3 t/ha with 196 kg N/ha. On plots given adequate P and K fertilizer, between 51 and 68% of the labelled N was recovered in the above-ground crop; only about 40% was recovered where P deficiency limited crop growth. In 1981 fertilizerderived N retained in soil (0–70 cm) at harvest increased from 16 kg/ha, where 48 kg/ha was applied, to 38 kg/ha, where 192 kg/ha was applied. More than 80% of this retained N was in the plough layer (0–23 cm).Overall recovery of fertilizer N in crop plus soil ranged from 70 % to more than 90 % over the 4 years of the experiments. Losses of N were larger in years when spring rainfall was above average and when soil moisture deficits shortly after application were small.Crop uptake of unlabelled N derived from soil increased from 28 kg N/ha on the plot given no fertilizer N to 67 kg N/ha on the plot given 144 kg N/ha. The extra uptake of unlabelled N was mainly, if not entirely, due to greater mineralization of soil N in the plots that had been given N fertilizer for many years. Presumably fertilizer N increased the annual return of crop residues, which in turn led to an accumulation of mineralizable organic N, although there was only a small increase in total soil N content.Wheat given NH4-N grew less well and took up less N than wheat given N08-N in the relatively dry spring of 1980; there was little difference between the two forms of N in the wetter spring of 1981. In both years more fertilizer N was retained in the soil at harvest when fertilizer was applied as NH4-N than as N03-N.The N content of the soil in several plots of the experiment has been constant for many years, so that the annual removal of N is balanced by the annual input. A nitrogen balance for the plot given 144 kg fertilizer N/ha showed an average annual input of non-fertilizer N of at least 48 kg/ha, of which N in rain and seed accounts for about 14 kg/ha. The remainder may come from biological fixation of atmospheric N2 by blue-green algae, or from dry deposition of oxides of nitrogen and/or NH3 onto crop and soil. The overall annual loss of N from the crop–soil system on this particular plot was 54 kg N/ha per year, 28% of the total annual input from fertilizer and nonfertilizer N.


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


2004 ◽  
Vol 84 (4) ◽  
pp. 421-430 ◽  
Author(s):  
Y. K. Soon ◽  
M. A. Arshad

A field study was conducted to determine the effects and interactions of crop sequence, tillage and residue management on labile N pools and their availability because such information is sparse. Experimental treatments were no-till (NT) vs. conventional tillage (CT), and removal vs. retention of straw, imposed on a barley (Hordeum vulgare L.)-canola (Brassica rapa L.)-field pea (Pisum sativum L.) rotation. 15N-labelling was used to quantify N uptake from straw, below-ground N (BGN), and fertilizer N. Straw retention increased soil microbial biomass N (MBN) in 2 of 3 yr at the four-leaf growth stage of barley, consistent with observed decreases in extractable soil inorganic N at seeding. However, crop yield and N uptake at maturity were not different between straw treatments. No tillage increased soil MBN, crop yield and N uptake compared to CT, but had no effect on extractable soil inorganic N. The greater availability of N under NT was probably related to soil moisture conservation. Tillage effects on soil and plant N were mostly independent of straw treatment. Straw and tillage treatments did not influence the uptake of N from its various sources. However, barley following pea (legume/non-legume sequence) derived a greater proportion of its N from BGN (13 to 23% or 9 to 23 kg N ha-1) than canola following barley (nonlegumes) (6 to 16% or 3 to 9 kg N ha-1). Fertilizer N constituted 8 to 11% of barley N uptake and 23 to 32% of canola N uptake. Straw N contributed only 1 to 3% of plant N uptake. This study showed the dominant influence of tillage on N availability, and of the preceding crop or cropping sequence on N uptake partitioning among available N sources. Key words: Crop residue, crop sequence, labile nitrogen, nitrogen uptake, pea, tillage


1999 ◽  
Vol 79 (2) ◽  
pp. 277-286 ◽  
Author(s):  
P. A. Bowen ◽  
B. J. Zebarth ◽  
P. M. A. Toivonen

The effects of six rates of N fertilization (0, 125, 250, 375, 500 and 625 kg N ha−1) on the dynamics of N utilization relative to extractable inorganic N in the soil profile were determined for broccoli in three growing seasons. The amount of pre-existing extractable inorganic N in the soil was lowest for the spring planting, followed by the early-summer then late-summer plantings. During the first 2 wk after transplanting, plant dry-matter (DM) and N accumulation rates were low, and because of the mineralization of soil organic N the extractable soil inorganic N increased over that added as fertilizer, especially in the top 30 cm. From 4 wk after transplanting until harvest, DM and N accumulation in the plants was rapid and corresponded to a rapid depletion of extractable inorganic N from the soil. At high N-fertilization rates, leaf and stem DM and N accumulations at harvest were similar among the three plantings. However, the rates of accumulation in the two summer plantings were higher before and lower after inflorescence initiation than those in the spring planting. Under N treatments of 0 and 125 kg ha−1, total N in leaf tissue and the rate of leaf DM accumulation decreased while inflorescences developed. There was little extractable inorganic soil-N during inflorescence development in plots receiving no N fertilizer, yet inflorescence dry weights and N contents were ≥50 and ≥30%, respectively, of the maxima achieved with N fertilization. These results indicate that substantial N is translocated from leaves to support broccoli inflorescence growth under conditions of low soil-N availability. Key words: N translocation, N fertilizer


2021 ◽  
Vol 11 (20) ◽  
pp. 9566
Author(s):  
Tommaso Caloiero ◽  
Gaetano Pellicone ◽  
Giuseppe Modica ◽  
Ilaria Guagliardi

Landscape management requires spatially interpolated data, whose outcomes are strictly related to models and geostatistical parameters adopted. This paper aimed to implement and compare different spatial interpolation algorithms, both geostatistical and deterministic, of rainfall data in New Zealand. The spatial interpolation techniques used to produce finer-scale monthly rainfall maps were inverse distance weighting (IDW), ordinary kriging (OK), kriging with external drift (KED), and ordinary cokriging (COK). Their performance was assessed by the cross-validation and visual examination of the produced maps. The results of the cross-validation clearly evidenced the usefulness of kriging in the spatial interpolation of rainfall data, with geostatistical methods outperforming IDW. Results from the application of different algorithms provided some insights in terms of strengths and weaknesses and the applicability of the deterministic and geostatistical methods to monthly rainfall. Based on the RMSE values, the KED showed the highest values only in April, whereas COK was the most accurate interpolator for the other 11 months. By contrast, considering the MAE, the KED showed the highest values in April, May, June and July, while the highest values have been detected for the COK in the other months. According to these results, COK has been identified as the best method for interpolating rainfall distribution in New Zealand for almost all months. Moreover, the cross-validation highlights how the COK was the interpolator with the best least bias and scatter in the cross-validation test, with the smallest errors.


2019 ◽  
Vol 34 ◽  
pp. 41-66 ◽  
Author(s):  
Raffaella Balestrini ◽  
Carlo Andrea Delconte ◽  
Andrea Buffagni ◽  
Alessio Fumagalli ◽  
Michele Freppaz ◽  
...  

A number of studies have reported decreasing trends of acidifying and N deposition inputs to forest areas throughout Europe and the USA in recent decades. There is a need to assess the responses of the ecosystem to declining atmospheric pollution by monitoring the variations of chemical species in the various compartments of the forest ecosystem on a long temporal scale. In this study, we report on patterns and trends in throughfall deposition concentrations of inorganic N, dissolved organic N (DON) and C (DOC) over a 20-year (1995–2015) period in the LTER site -Val Masino (1190 m a.s.l.), a spruce forest, in the Central Italian Alps. The same chemical species were studied in the litter floor leachates and mineral soil solution, at three different depths (15, 40 and 70 cm), over a 10-year period (2005–2015). Inorganic N concentration was drastically reduced as throughfall and litter floor leachates percolated through the topsoil, where the measured mean values (2 µeq L-1) were much lower than the critical limits established for coniferous stands (14 µeq L-1). The seasonal temperature dependence of throughfall DOC and DON concentration suggests that the microbial community living on the needles was the main source of dissolved organic matter. Most of DOC and DON infiltrating from the litter floor were retained in the mineral soil. The rainfall amount was the only climatic factor exerting a control on DOC and N compounds in throughfall and forest floor leachates over a decadal period. Concentration of SO4 and NO3 declined by 50% and 26% respectively in throughfall deposition. Trends of NO3 and SO4 in forest floor leachates and mineral soil solution mirrored declining depositions. No trends in both DON and DOC concentration and in DOC/DON ratio in soil solutions were observed. These outcomes suggest that the declining NO3 and SO4 atmospheric inputs did not influence the dynamic of DON and DOC in the Val Masino forest. The results of this study are particularly relevant, as they are based on a comprehensive survey of all the main compartments of the forest ecosystem. Moreover, this kind of long-term research has rarely been carried out in the Alpine region.


2022 ◽  
Vol 51 (6) ◽  
pp. 31-38
Author(s):  
K. K. Musinov ◽  
V. E. Kozlov ◽  
A. S. Surnachev ◽  
I. E. Likhenko

The need for vernalization is a duration-dependent effect of low, positive temperatures in order to ensure the plants' transition to generative development. If the requirement for the duration of germination is not met, the plant will not enter the stage of forming generative organs. The vernalization requirements of winter soft wheat samples of different geographical origins are determined. An assessment of the vernalization period duration influence on the severity of the elements of the yield structure is given. The research material consisted of 15 cultivars of soft winter wheat of various geographic origin. The samples were germinated in paper rolls, then vernalized in a climatic chamber at a temperature of 3–5 ºС for 60, 50, and 40 days. At the end of vernalization, 10 plants of each sample were planted in a greenhouse. The dates of the onset of phenological phases were noted: tube emergence, earing, flowering. To determine the main elements of the yield structure, a structural analysis of plants was carried out. With an increase in the vernalization period, a decrease in the interfacial periods from tube emergence to flowering was noted. The influence of the timing of vernalization was noted on the manifestation of the spike length trait. It was found that the total number of stems and the number of productive stems in almost all varieties decreases with an increase in the period of vernalization. Significant differences between collection varieties in the need for vernalization, due to both their geographical origin and the genotype of plants are revealed. In all the studied forms, with an increase in the period of vernalization, the rate of plant development increased to varying degrees, the total number of stems, the productive stem and the length of the spike decreased.


Sign in / Sign up

Export Citation Format

Share Document