Grain yield and quality of wheat under increased ultraviolet radiation (UV-B) at later stages of the crop cycle

2007 ◽  
Vol 146 (1) ◽  
pp. 57-64 ◽  
Author(s):  
D. F. CALDERINI ◽  
X. C. LIZANA ◽  
S. HESS ◽  
C. R. JOBET ◽  
J. A. ZÚÑIGA

SUMMARYThe increase of ultraviolet (UV-B) radiation could be a challenge for wheat production systems in Southern Chile, as in other areas. Previous reports have shown that increased UV-B radiation decreases wheat yield by affecting both grain number and grain weight. However, contrasting results have also been published showing no effect on wheat biomass and grain yield. In addition, little is known about the effect of higher UV-B radiation at particular periods of the crop cycle on grain quality traits. The objective of the present study was to evaluate grain yield, yield components and grain quality in response to increased UV-B radiation during key periods of yield component determination. Two experiments were carried out under field conditions in the Universidad Austral de Chile (latitude 39°62′S). Two spring wheat cultivars were exposed to two periods of supplemented UV-B radiation (280–320 nm): (i) between booting and anthesis, c. 20 days, and (ii) from 10 days after anthesis until physiological maturity, c. 40 days. Ultraviolet radiation was increased to levels of 3·8 and 4·9 kJ/m2/day in experimental years 1 and 2, respectively, by using UV-B lamps. At harvest, plants were sampled to quantify aboveground biomass, grain yield, grain number and average grain weight. In addition, protein and gluten concentration of grains were measured. Grain yield was not affected (P>0·05) by the UV-B increase at pre- or at post-anthesis treatments. Similar results were found for each yield component. In addition, grain protein and gluten concentration showed similar values in the increased UV-B and control treatments. Therefore, if increases in UV-B radiation take place during the latter stages of the crop cycle as is expected, the present results do not support the speculation that increases of UV-B radiation in Southern Chile will compromise wheat production systems.

2011 ◽  
Vol 91 (1) ◽  
pp. 37-48 ◽  
Author(s):  
M. Cogliatti ◽  
F. Bongiorno ◽  
H. Dalla Valle ◽  
W J Rogers

Fifty-seven accessions of canaryseed (47 populations and 10 cultivars) from 19 countries were evaluated for agronomic traits in four field trials sown over 3 yr in the province of Buenos Aires, Argentina. Genetic variation was found for all traits scored: grain yield and its components (grain weight, grain number per square meter, grain number per head and head number per square meter), harvest index, percent lodging, and phenological characters (emergence to heading, emergence to harvest maturity and heading to harvest maturity). Although genotype × environment interaction was observed for all traits, the additive differences between accessions were sufficient to enable promising breeding materials to be identified. Accessions superior in performance to the local Argentinean population, which in general gave values close to the overall mean of the accessions evaluated, were identified. For example, a population of Moroccan origin gave good yield associated with elevated values of the highly heritable character grain weight, rather than with the more commonly observed grain number per square meter. This population was also of relatively short stature and resistant to lodging, and, although it performed best when sown within the normal sowing date, tolerated late sowing fairly well. Other accessions were also observed with high grain weight, a useful characteristic in itself, since large grains are desirable from a quality point of view. Regarding phenology, the accessions showed a range of 160 degree days (8 calendar days in our conditions) in maturity, which, while not large in magnitude, may be of some utility in crop rotation management. Some accessions were well adapted to late sowing. Grain yield in general was strongly correlated with grain number per square meter. Principal components analysis (PCA) carried out for all characteristics provided indications of accessions combining useful characteristics and identified three components that explained approximately 70% of the phenotypic variation. Furthermore, a second PCA plus regression showed that approximately 60% of the variation in grain yield could be explained by a component associated with harvest index and grain number per square meter. Pointers were provided to possible future breeding targets.Key words: Phalaris canariensis, canaryseed, accessions, yield, phenology, genetics, breeding


1998 ◽  
Vol 130 (3) ◽  
pp. 287-295 ◽  
Author(s):  
C. L. MORGAN

Twenty-eight F1 hybrids of wheat and their parents were grown in field trials at Trumpington, Cambridge during 1986/87 and 1987/88. They were derived from crosses between seven ‘modern’ varieties, used as female parents, and either two ‘old’ (Squareheads Master and Partridge) or two ‘modern’ varieties (Bert and Motto), which were used as male parents. Grain yield, yield components, biomass and height were determined. The male parents were chosen to provide contrasting phenotypes and genetic backgrounds for the F1 hybrids. Mid-parent advantage, the increase of a hybrid for a given character above the mean of its parents, and heterosis, the increase of a hybrid above the ‘better’ parent for that character, were calculated. Most F1 hybrids showed mid-parent advantage for the characters studied. This tended to be greatest for hybrids derived from parents with the largest phenotypic differences in that character. In contrast, where heterosis occurred it tended to be greatest where the phenotypic difference between the parents was least. This suggests that the beneficial effects of hybridization, resulting from the dispersion of dominant genes between the parents, was insufficient to overcome the detrimental effects of other genes present where the ‘less good’ parent was substantially lower than the ‘better’ parent. Hybrids derived from the ‘modern’ male parents had greater heterosis for grain yield and mean grain weight than those from the ‘old’ parents. Of the yield components, positive heterosis for mean grain weight resulted in heavier seeds and was the most important yield component in determining heterosis in grain yield. Heterosis for the number of grains/ear was small or did not differ significantly from zero while number of ears/m2 showed negative heterosis resulting in fewer ears/m2 in the hybrids.


2016 ◽  
Vol 61 (2) ◽  
pp. 113-125
Author(s):  
Gordana Brankovic ◽  
Dejan Dodig ◽  
Desimir Knezevic ◽  
Vesna Kandic ◽  
Jovan Pavlov

The research was aimed at examining variability, variance components, broadsense heritability (h2), expected genetic advance of thousand grain weight (TGW) and grain number per spike (GNS) of 15 genotypes of bread wheat and 15 genotypes of durum wheat. Field trials were carried out during 2010-2011 and 2011-2012 growing seasons at the three sites: Rimski Sancevi, Zemun Polje and Padinska Skela. Results of this investigation showed that the genetic component of variance (?2 g) was predominant for TGW of bread and durum wheat and for GNS of bread wheat. The genotype ? environment interaction (?2 ge) component of phenotypic variance was 8.72 times higher than ?2 g for GNS of durum wheat and pointed to the greater instability of durum wheat genotypes. h2 was very high (>90%) for TGW and GNS of bread wheat, high for TGW of durum wheat - 87.3% and low for GNS of durum wheat - 39.5%. Considering the high values obtained for h2 - 96.4% and the highest value for expected genetic advance as percent of mean (GAM) - 19.3% for TGW of bread wheat, the success of selection for desired values of this yield component can be anticipated. The success of selection cannot be predicted for GNS of durum wheat due to low values obtained for h2 and GAM of 39.5% and 2.8%, respectively.


2010 ◽  
Vol 56 (No. 5) ◽  
pp. 218-227 ◽  
Author(s):  
A. Madani ◽  
A. Shirani-Rad ◽  
A. Pazoki ◽  
G. Nourmohammadi ◽  
R. Zarghami ◽  
...  

The experiments were laid out to understand the mechanisms causing yield limitations imposed by post-anthesis water and nitrogen deficiencies in plants with modified source-sink ratios. Two soil-water regimes were allotted to the main plots. At anthesis, three levels of N were applied: none, 25% and 50% of total the N supply. Spike-halving caused reduction in grain yield at both water regimes and all N supply levels, showing that the reduction in grain number can not be compensated by a higher individual grain weight. Sink reduction by trimming 50% of the spikelets reduced grain number per ear by 38.5% and increased individual grain weight by 12.0%, which shows the plasticity in grain weight and grain set of wheat if sufficient assimilates are available. Additional nitrogen supply at anthesis had no significant effect on the total aboveground biomass, but increased grain yield through more allocation of dry matter to grains. Our findings suggest that for rainfed wheat with optimum N supply and supplemental irrigation, wheat growers should choose cultivars with a high grain number per ear and manage the crop to increase grain number per unit of land (sink capacity).


1970 ◽  
pp. 24-27
Author(s):  
Maysoun M. Saleh ◽  
Dyab S. Moussa ◽  
Nader I. Alkaraki ◽  
Abbas Lateef Abdurahman

Seven wheat genotypes (Triticum dicoccum) and the local check sham5 were planted all at Al-Ghab and Izra Research centers in The General Commission for Scientific Agricultural Research in Syria during growing season 2010/2011. Yield components (number of total and fertile tillers per plant, number and weight of grains per spike, weight of thousand grain and individual plant grain yield) were studied in two sites in order to predict their effect and to determine their effects on grain yield in order to define selection criteria for grain yield. Results revealed all studied traits except total tillers number were positively correlated with grain yield, and only (fertile tillers number and grain number per spike and grain weight per spike) had a significant regression with grain yield and these traits can explain about (27.6, 67.7, 62.2)% respectively of the variation final grain yield. Results of path analysis indicated that the direct effect of fertile tillers per plant and grain weight per spike on grain yield was positive and high (0.6178, 0.7563) respectively, so that we can depend on them in breeding program as selection criteria to increase grain yield in plant.


Author(s):  
Priscilla Glenn ◽  
Junli Zhang ◽  
Gina Brown-Guedira ◽  
Noah DeWitt ◽  
Jason P. Cook ◽  
...  

Abstract Key message We discovered a natural FT-A2 allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time. Abstract Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations in FLOWERING LOCUS T2 (FT2) increase spikelet number per spike (SNS), an important grain yield component. However, these mutations were also associated with reduced fertility, offsetting the beneficial effect of the increases in SNS on grain number. Here, we report a natural mutation resulting in an aspartic acid to alanine change at position 10 (D10A) associated with significant increases in SNS and no negative effects on fertility. Using a high-density genetic map, we delimited the SNS candidate region to a 5.2-Mb region on chromosome 3AS including 28 genes. Among them, only FT-A2 showed a non-synonymous polymorphism (D10A) present in two different populations segregating for the SNS QTL on chromosome arm 3AS. These results, together with the known effect of the ft-A2 mutations on SNS, suggest that variation in FT-A2 is the most likely cause of the observed differences in SNS. We validated the positive effects of the A10 allele on SNS, grain number, and grain yield per spike in near-isogenic tetraploid wheat lines and in an hexaploid winter wheat population. The A10 allele is present at very low frequency in durum wheat and at much higher frequency in hexaploid wheat, particularly in winter and fall-planted spring varieties. These results suggest that the FT-A2 A10 allele may be particularly useful for improving grain yield in durum wheat and fall-planted common wheat varieties.


2018 ◽  
Vol 16 (3) ◽  
pp. e0903 ◽  
Author(s):  
Milan Mirosavljević ◽  
Vojislava Momčilović ◽  
Srbislav Denčić ◽  
Sanja Mikić ◽  
Dragana Trkulja ◽  
...  

Climate significantly affects cropping systems across Europe. Knowledge of the variability in grain number per unit area and grain weight across different growing seasons and its association with grain yield is important for further improving small grain crop production. The main aim of this study was to compare grain yield and its numerical components among triticale, wheat, two-rowed and six-rowed barley cultivars across different growing seasons in a typical Pannonian location (south-eastern part of Central Europe). Trials with twelve winter cereal genotypes (three two-rowed barley, three six-rowed barley, three wheat and three triticale genotypes) were carried out in four successive seasons in Novi Sad, Serbia. Results of this study showed that growing season, species, cultivar, and species × growing season interaction significantly (p<0.01) affected grain yield and its determinants. Generally, triticale had higher average grain yield, while the lowest grain yield was recorded in six-rowed barleys. Grain yield was more associated with the number of grains/m2 than with grain weight. Heading date was recognized as one of the important adaptive traits in crop development and yield determination. Short duration of the pre-anthesis phase in early cultivars and delayed anthesis in late cultivars significantly decreased the number of grains/spike in different species/spike types, reducing the final grain yield. Medium early cultivars had the highest number of grains/spike due to optimal duration of the pre-anthesis period and heading date and are suggested as recommendable for large scale production in the Pannonian environments.


2021 ◽  
Vol 58 (2) ◽  
pp. 310-316
Author(s):  
AK Budhia ◽  
RK Panda ◽  
LM Garnayak ◽  
RK Nayak ◽  
TK Samant

A field experiment was conducted during kharif season of 2019 at Agronomy Main Research Farm, Odisha University of Agriculture and Technology, Bhubaneswar to study the effect of establishment methods and nutrient management on biochemical attributes, grain quality, yield parameters and yield of rice. The experiment comprised of two rice establishment methods, viz. direct seeded (DSR) and transplanted (TPR) and three nutrient management practices, viz. inorganic (soil test based fertilizer recommendation (STBFR), organic (1/3rd N through green manuring + 1/3rd N through neem oil cake + 1/3rd N through vermicompost) and integrated nutrient management (50% through STBFR + 50% through green manuring) laid out in a randomised block design with three replications. The results indicated that the concentration of chlorophyll was maximum at vegetative and gradually decreased up to maturity stage. TPR recorded comparatively higher total chlorophyll content (2.91mg g-1), grain C (40.58%), H (6.98%), S (0.18%), C/N (36.54), panicles hill-1 (6.78), panicle weight hill-1 (27.05 g), 1000 grain weight (27.86 g), number of filled grains panicle-1 (176.60) with 18.3 % yield advantage over DSR. Among nutrient management, INM recorded higher S (0.17%), carbohydrate (17.82%), panicle numbers hill-1 (8.5), panicle weight hill-1 (30.19 g), 1000 grain weight (28.13 g), number of filled grains panicle-1 (187.89), grain yield (4.36 t ha-1) with harvest index (39.67%), where as maximum N (1.48%), C (41.58%), H (7.07%), S(0.18%), C/H (5.87) was obtained in inorganic with grain yield (3.78 t ha-1). Organic produced the highest chlorophyll total (2.72 mg g-1), C/N (37.89) and harvest index (36.72%) with minimum grain yield (3.74 t ha-1). Hence, organic in conjunction with chemical ferilisers under TPR not only enhances the growth and yield but also improvement of biochemical attributes and grain quality of rice in coastal Odisha.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2356
Author(s):  
Catherine J. Howarth ◽  
Pilar M. J. Martinez-Martin ◽  
Alexander A. Cowan ◽  
Irene M. Griffiths ◽  
Ruth Sanderson ◽  
...  

The extent to which the quality and yield of plant varieties are influenced by the environment is important for their successful uptake by end users particularly as climatic fluctuations are resulting in environments that are highly variable from one growing season to another. The genotype-by-environment interaction (GEI) of milling quality and yield was studied using four winter oat varieties in multi-locational trials over 4 years in the U.K. Significant differences across the 22 environments were found between physical grain quality and composition as well as grain yield, with the environment having a significant effect on all of the traits measured. Grain yield was closely related to grain number m−2 whereas milling quality traits were related to grain size attributes. Considerable genotype by environment interaction was obtained for all grain quality traits and stability analysis revealed that the variety Mascani was the least sensitive to the environment for all milling quality traits measured whereas the variety Balado was the most sensitive. Examination of environmental conditions at specific within-year stages of crop development indicated that both temperature and rainfall during grain development were correlated with grain yield and β-glucan content and with the ease of removing the hull (hullability).


2019 ◽  
Author(s):  
Jian Yang ◽  
Yanjie Zhou ◽  
Yu'e Zhang ◽  
Weiguo Hu ◽  
Qiuhong Wu ◽  
...  

Abstract Background: Grain weight is an important yield component. Selection of advanced lines with heavy grains show high grain sink potentials and strong sink activity, which is an increasingly important objective in wheat breeding programs. Rice OsGS3 has been identified as a major quantitative trait locus for both grain weight and grain size. However, allelic variation of GS3 has not been characterized previously in hexaploid wheat. Results : We cloned 2445, 2393, and 2409 bp sequences of the homologs TaGS3-4A , TaGS3-7A , and TaGS3-7D in wheat ‘Changzhi 6406’, a cultivar that shows high grain weight. The TaGS3 genes each contained five exons and four introns, and encoded a deduced protein of 170, 169, and 169 amino acids, respectively. Phylogenetic analysis of plant GS3 protein sequences revealed GS3 to be a monocotyledon-specific gene and the GS3 proteins were resolved into three classes. The length of the atypical Gγ domain and the cysteine-rich region was conserved within each class and not conserved between classes. A single-nucleotide polymorphism in the fifth exon (at position 1907) of TaGS3-7A leads to an amino acid change (ALA/THR) and showed different frequencies in two pools of Chinese wheat accessions representing extremes in grain weight. Association analysis indicated that the TaGS3-7A-A allele was associated with higher grain weight in the natural population. The TaGS3-7A-A allele was favoured in global modern wheat cultivars but the allelic frequency varied among different wheat-production regions of China, which indicated that this allele is of potential utility to improve wheat grain weight in certain wheat-production areas of China. Conclusions : The novel molecular information on wheat GS3 homologs and the KASP functional marker designed in this study may be useful in marker-assisted breeding for genetic improvement of wheat.


Sign in / Sign up

Export Citation Format

Share Document