The relationship of grain filling with abscisic acid and ethylene under non-flooded mulching cultivation

2009 ◽  
Vol 147 (4) ◽  
pp. 423-436 ◽  
Author(s):  
Z. C. ZHANG ◽  
Y. G. XUE ◽  
Z. Q. WANG ◽  
J. C. YANG ◽  
J. H. ZHANG

SUMMARYGrain filling is an intensive transportation process regulated by plant hormones. The present study investigated whether and how the interaction between abscisic acid (ABA) and ethylene is involved in mediating the grain filling of rice (Oryza sativaL.) under non-flooded mulching cultivation. A field experiment repeated over 2 years was conducted with two high-yielding rice cultivars, Zhendao 88 (ajaponicacultivar) and Shanyou 63 (anindicahybrid cultivar), and four cultivation treatments were imposed from transplanting to maturity: traditional flooding as control (TF), non-flooded plastic film mulching (PM), non-flooded wheat straw mulching (SM) or non-flooded no mulching (NM). Compared with that under TF, grain yield was reduced by 21·0–23·1% under PM (P<0·05), 1·4–1·8% under SM (P>0·05) and 50·9–55·4% under NM (P<0·05). Both PM and NM significantly (P<0·05) reduced the proportion of filled grains and grain weight and were associated with decreased grain filling rates. In SM there was a significant increase in the grain filling rate. The concentration of ABA in the grains was very low at the early grain filling stage, reaching a maximum when the grain filling rate was the highest, and showed no significant differences (P>0·05) between TF, PM and SM. However, it was significantly higher in NM. In contrast to ABA, the ethylene evolution rate and 1-aminocyclopropane-1-carboxylic acid (ACC) concentration in the grains were very high at the start of grain filling and sharply decreased during the active grain filling period. Both PM and NM increased the ethylene evolution rate and ACC concentration, whereas these were reduced in SM. The ratio of ABA to ACC was increased under SM but decreased under PM and NM, indicating that ethylene was more enhanced than ABA when plants were grown under NM and PM. The concentration of ABA correlated with the grain filling rate as a hyperbolic curve, whereas the ethylene evolution rate correlated with the grain filling rate as an exponential decay equation. The ratio of ABA to ACC significantly correlated with the grain filling rate with a linear relationship. Application of amino-ethoxyvinylglycine (inhibitor of ethylene synthesis by inhibiting ACC synthase) or ABA to panicles under TF and PM at the early grain filling stage significantly increased activities of the key enzymes involved in sucrose to starch conversion in the grains, sucrose synthase, ADP glucose pyrophosphorylase and soluble starch synthase, grain filling rate and grain weight. Application of ethephon (ethylene-releasing agent) or fluridone (inhibitor of ABA synthesis) had the opposite effect. The results suggest that antagonistic interactions between ABA and ethylene may be involved in mediating the effect of non-flooded mulching cultivation on grain filling, and a high ratio of ABA to ethylene enhances grain filling rate.

2016 ◽  
Vol 96 (2) ◽  
pp. 283-295 ◽  
Author(s):  
Dongqing Yang ◽  
Dian Peng ◽  
Wei Yang ◽  
Yanping Yin ◽  
Yong Li ◽  
...  

Effects of exogenous abscisic acid (ABA) on antioxidant enzymes activities and endosperm cell division of two wheat (Triticum aestivum L.) cultivars were investigated. Results showed that the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity in flag leaves of both cultivars is elevated by application of ABA and it is correlated with less membrane damage: lower malondialdehyde (MDA). Exogenous ABA significantly increased endosperm cell number and endosperm division rate, finally increased grain weight. Although ABA treatment decreased endogenous zeatin riboside (ZR) content in flag leaves from 7 to 28 days after anthesis (DAA), indole acetic acid (IAA) levels were significantly increased by spraying with ABA. Correlation analysis showed that endogenous contents of ZR, ABA, and IAA in grains were positively and significantly correlated with grain-filling rate. IAA content in leaves was positively and significantly correlated with grain-filling rate. The results suggested that increased grain weight of ABA-treated plants was due to higher antioxidant abilities of flag leaf resulting in longer maintenance of photosynthetic capacity and higher grain-filling rate.


2019 ◽  
Author(s):  
Wenwen Cui ◽  
Bingyun Zuo ◽  
Quanhao Song ◽  
Muhammad Kamran ◽  
Shahzad Ali ◽  
...  

AbstractDense plant cultivation is an efficient approach to improve the maize production by maximizing the utilization of energy and nutrient. However, dense plant populations may aggravate the abortion rate of young grains and result in fewer number of kernels per ear. Grain filling rate and duration play a decisive role in maize grain yield. Therefore, increasing plant density, consideration of enhancing the grain filling rate and duration of individual maize plant and regulating crop senescence would be the first priority. In this study, we examined the regulatory effects of GA4+7 under two application methods (shank-smearing and silk-smearing). Shank-soaking with GA4+7 at the rate of 0 (CK1), 10 (T1), 60 (T2), and 120 (T3) mg L-1, while silk-smearing at the rate of 0 (CK2), 10 (S1), 60 (S2), and 120 (S3) mg L-1 were used. The results showed that GA4+7 improved the grain filling rate by increasing the content of auxin, gibberellin and zeatin and abscisic acid in grains compared to control plants. In addition, The auxin, gibberellin and zeatin contents in the grains were positively and significantly correlated with the maximum grain weight and the maximum and mean grain-filling rates; the abscisic acid level was positively correlated with the maximum grain weight and the maximum and mean grain-filling rates. Moreover, GA4+7 increased the activities of superoxide dismutases, catalases, peroxidases, and reduced the malondialdehyde content in leaves compared with untreated plants. At the rate of 60 mg L-1, GA4+7 showed the greatest effect for shank-smearing and silk-smearing (T2 and S2), followed by 10 mg L-1 (T1) for shank-smearing and 120 mg L-1 (S3) for silk-smearing. Our results suggest that application of 60 mg L-1 GA4+7 for smearing application could efficiently be used for changed the level of hormones in grains and antioxidant enzymes in ear leaf, would be useful for enhancing grain filling rate and delaying leaves senescence, and resulting in an increasing of maize grain yield.


2017 ◽  
Vol 63 (No. 1) ◽  
pp. 22-28 ◽  
Author(s):  
Wang Yunqi ◽  
Zhang Yinghua ◽  
Wang Zhimin ◽  
Tao Hongbin ◽  
Zhou Shunli ◽  
...  

The North China Plain (NCP) serves as China’s second most important maize production region. Rotary tillage, a popular method used in winter wheat/summer maize systems in the region, has adverse effects on maize production. The current study was conducted to determine whether rotary tillage after subsoiling in the winter wheat season (RS) improves the grain-filling rate and yield of summer maize by decreasing soil bulk density, when compared with rotary tillage (R), in the NCP. The RS treatment decreased soil bulk density and increased soil moisture in the summer maize season when compared with the R treatment. Root number under the RS treatment at 8 collar and silking stages was 22.4−35.3% and 8.0−11.7% greater than under the R treatment, respectively. The RS treatment significantly enhanced the grain-filling rate and grain weight as compared to the R treatment. Yield, thousand grain weight, biomass, and harvest index under the RS treatment were 7.7, 7.2, 2.3 and 5.3% higher than under the R treatment. Thousands grain weight was correlated with soil bulk density and soil moisture after silking. Consequently, the increase in grain weight and yield of summer maize resulted from the decrease in soil bulk density and a consequent increase in soil moisture, root number and grain-filling rate.  


2011 ◽  
Vol 37 (8) ◽  
pp. 1372-1377
Author(s):  
Yue-Xia WANG ◽  
Biao SUO ◽  
Peng-Fei ZHAO ◽  
Xiao-Fei QU ◽  
Li-Gang YUAN ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11218
Author(s):  
Haoliang Yan ◽  
Chunhu Wang ◽  
Ke Liu ◽  
Xiaohai Tian

There is concern over the impact of global warming on rice production due increased heat stress, coupled with decreased relative humidity (RH). It is unknown how rice yield and quality are affected by heat stress and decreased RH during the grain filling stage. We conducted experiments in controlled growth chambers on six rice cultivars, varying in heat tolerance using 12 combinative treatments of three factors: two RH levels (75% and 85%), three temperature levels (the daily maximum temperature at 33 °C, 35 °C, and 37 °C), and two durations (8 d and 15 d after anthesis). Results showed that RH75% with temperature treatments significantly reduced grain weight, which was higher than RH85%. The same trend was also observed for both head rice rate and chalkiness. R168 was the most heat-tolerant cultivar, but it still had some differences in grain weight, head rice rate, and chalkiness between the two RH regimes. The lower RH was most detrimental at 35 °C, and to a lesser extent at 33 °C, but had a negligible effect at 37 °C. Our results provide a better understanding of temperature and RH’s interaction effects on rice quality during the grain filling stage, suggesting that RH should be considered in heat tolerance screening and identification to facilitate rice breeding and genetic improvement.


2021 ◽  
Vol 67 (No. 2) ◽  
pp. 71-76
Author(s):  
Milan Mirosavljević ◽  
Sanja Mikić ◽  
Ankica Kondić Špika ◽  
Vesna Župunski ◽  
Rong Zhou ◽  
...  

High temperature decreases winter wheat grain yield by reducing the grain number and grain weight. The effect of heat stress on spike grain distribution and weight of individual grains within spike and spikelets was less studied. Our aim is to identify influence of high temperatures during different phenological stages on spike grain distribution and weight and to explore genotypic variation of the studied wheat cultivars. Within this study, a controlled experiment was conducted with 12 different winter wheat cultivars under heat stress at anthesis and mid-grain filling stage. The results showed that spike grain weight, thousand-grain weight and grain number per spike decreased moderately in treatments with individual heat stress at anthesis and mid-grain filling period, respectively, which decreased severely in the multiple heat stressed plants at both stages compared with the control treatment. Heat stress decreased number of spikelets with grains. Grain weight at the G1, G2 and G3 positions had a positive relationship with spike grain weight. Among the studied Serbian wheat cultivars Subotičanka and Renesansa were identified as the most heat tolerant and sensitive, respectively. Heat tolerance of the studied cultivars should be based on the cultivar capacity to retain higher grain weight, and to maintain production of distal spikelet grains.


2018 ◽  
Vol 19 (10) ◽  
pp. 2945 ◽  
Author(s):  
Weiwei Lin ◽  
Xiaodong Guo ◽  
Xinfeng Pan ◽  
Zhaowei Li

To evaluate the effect of changes in chlorophyll (Chl) composition and fluorescence on final yield formation, early senescence leaf (esl) mutant rice and its wild-type cultivar were employed to investigate the genotype-dependent differences in Chl composition, Chl fluorescence, and yield characteristics during the grain-filling stage. However, the temporal expression patterns of key genes involved in the photosystem II (PSII) reaction center in the leaves of two rice genotypes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that the seed-setting rate, 1000-grain weight, and yield per plant remarkably decreased, and the increase in the 1000-grain weight during the grain-filling stage was retarded in esl mutant rice. Chl composition, maximal fluorescence yield (Fm), variable fluorescence (Fv), a maximal quantum yield of PSII photochemistry (Fv/Fm), and net photosynthetic rate (Pn) in esl mutant rice considerably decreased, thereby indicating the weakened abilities of light energy harvesting and transferring in senescent leaves. The esl mutant rice showed an increase in the minimal fluorescence yield (F0) and 1 − Fv/Fm and decreases in the expression levels of light-harvesting Chl a/b binding protein (Cab) and photosystem II binding protein A (PsbA), PsbB, PsbC, and PsbD encoding for the reaction center of the PSII complex during the grain-filling stage. These results indicated the PSII reaction centers were severely damaged in the mesophyll cells of senescent leaves, which resulted in the weakened harvesting quantum photon and transferring light energy to PSI and PSII for carbon dioxide assimilation, leading to enhanced heat dissipation of light energy and a decrease in Pn.


Author(s):  
Zhi Dou ◽  
Haixiang Zhang ◽  
Wenzhu Chen ◽  
Ganghua Li ◽  
Zhenghui Liu ◽  
...  

Abstract Grain-filling, as the final growth stage of rice, is sensitive to environmental temperature change. Previous studies mainly concerned about the effects of high temperature stress during grain-filling on rice growth, and most experiments were carried out with pot for cultivating rice and greenhouse for warming. This research investigated the response of rice grain-filling of superior spikelets (SS) and inferior spikelets (IS) of two japonica cultivars to elevated temperature during grain-filling stage under open-field warming conditions in lower reaches of Yangtze River Basin using free-air temperature enhancement facility. Results indicated that rice yield was not significantly changed by warming less than 4°C. SS and IS showed different responses to elevated temperature during the grain-filling stage, whereas there were similar trends between two cultivars and years. For SS, although elevated temperature enhanced its filling rate during the early grain-filling period, and caused a shorter grain-filling period and a lighter grain weight; for IS, elevated temperature improved its grain weight by enhancing its filling rate during middle and late grain-filling period due to the increased number of days with suitable temperature. For both SS and IS, key starch biosynthesis enzymes and indole-3-acetic acid content exhibited generally a similar dynamics trend with grain-filling rates, and these sink strength parameters presented higher levels under elevated temperature relative to natural temperature for IS during middle and late grain-filling period. Consequently, warming less than 4°C presented different influences on SS and IS; the improvement of IS filling under warming regime was associated with the intensification of grain sink strength.


2021 ◽  
Vol 13 (6) ◽  
pp. 3125
Author(s):  
Zizhu Jiang ◽  
Lin Piao ◽  
Dong Guo ◽  
Hengguang Zhu ◽  
Shuai Wang ◽  
...  

A water deficit during the grain-filling stage increases the frequency of yield loss in maize (Zea mays L.). Abscisic acid (ABA) plays a regulatory role in many stages of plant growth; however, its effects on sucrose-metabolizing enzyme activities under stress are poorly understood. The activities of cell-wall-bound acid invertase, vacuolar invertase, cytoplasmic invertase, and sucrose synthase decreased continuously under drought stress, whereas ABA treatment partially restored these activities. In addition, the increase and development of sucrose content under drought stress were related to invertase activity. Up-regulation of the activities and gene expression of cell-wall-bound acid invertase and vacuolar invertase with ABA treatment contributed to the increase in the number of rows and number of grains per row. Furthermore, ABA inhibited the increase in the length of the bald tip. Compared with the control group, water stress significantly reduced the yield index, with the lowest yield index on the 10th day of stress. These results suggest that the increase in ABA-induced sucrose-metabolizing enzyme activity might be an effective mechanism to improve maize drought resistance at the grain-filling stage.


Sign in / Sign up

Export Citation Format

Share Document