The effect of sowing date and nitrogen rate on the grain yield, grain quality and malt analyses of spring malting barley for distilling in Ireland

2018 ◽  
Vol 156 (4) ◽  
pp. 515-527 ◽  
Author(s):  
E. M. Potterton ◽  
T. McCabe

AbstractThe significant expansion of whiskey distillation in Ireland has increased requirements on the Irish malting barley industry to supply spring barley with low grain nitrogen concentration (GNC). Published literature suggests that genetics, soil type and environmental conditions are the predominant drivers controlling production of malting barley with low GNC values. However, it is acknowledged that agronomic practices such as sowing date and nitrogen (N) application are also important factors in determining the grain yield (GY) and grain quality (GQ) of malting barley. The effects of four N fertilizer rates (90, 110, 130 and 150 kg N/ha) and two sowing dates (March and April) on GY and GQ of a two-row spring barley variety (Hordeum vulgare L. cvar Overture) was evaluated at two different sites over a 3-year period (2014–2016). Earlier sowing dates resulted in significantly higher mean GY (7.98 t/ha) compared with later sowing dates (7 t/ha). GY and GNC also increased consistently with greater increments of fertilizer N. Earlier sowing dates also significantly improved several distilling malt quality parameters, such as soluble extract (SE), fermentable extract, predicted spirit yield and fermentability. Later sowing dates increased diastatic power and soluble N. The results of the current study suggest that the likelihood of producing spring malting barley with low GNC values and better malting quality is enhanced through earlier sowing dates on suitable soil types. Earlier sowing dates also facilitated the use of higher fertilizer N rates, enabling high GY potential without crossing the GNC threshold for the distilling market.

1995 ◽  
Vol 125 (1) ◽  
pp. 25-37 ◽  
Author(s):  
J. Webb ◽  
R. Sylvester-Bradley ◽  
J. D. Wafford

SUMMARYAt 14 sites in the UK, spring wheat (Triticum aestivum) cv. Tonic, was sown on three or four dates at each site between October and March in the 1988/89, 1989/90 and 1990/91 seasons. Responses to spring-applied fertilizer N over the range 0–320 kg/ha were determined. Earlier sowing did not increase uptake of soil N by the crop. Fertilizer N increased grain N offtake by between 25 and 140 kg/ha and yield by between 0·3 and 5·5 t/ha, although grain yield was less responsive to fertilizer N at later sowing dates. Apparent recovery of fertilizer N (AFR) also decreased as sowing was delayed but there was no effect of delayed sowing on the amount of grain produced from each kg of fertilizer N recovered. Because fertilizer N recovery decreased with later sowing, the amount of fertilizer N needed to produce the optimum economic grain yield was not reduced. Neither AFR nor optimum fertilizer (Nopt) was related to optimum yield. Regression of Nopt on the difference between optimum yield and yield without fertilizer N (△y) explained 77% of the variance in Nopt. There was an inverse relationship between △y and soil mineral N (SMN) in spring; regression of △y, on SMN in spring accounted for 29% of the variance in △y Current advisory systems which adjust economic fertilizer N recommendations according to anticipated yield are not justified by these results. Moreover the adjustments made, based on yield expectation, appear about three times as large as those needed to minimize residues of fertilizer N left unrecovered by the crop and to reduce the risk of nitrate leaching in the following winter.


1995 ◽  
Vol 125 (2) ◽  
pp. 183-188 ◽  
Author(s):  
M. J. Conry

SUMMARYNine experiments were carried out on three different soil types in the south-east of Ireland over three years (1989, 1992 and 1993) to test the effect of early, normal and late sowing at three rates of fertilizer nitrogen (100, 125, 150 kg/ha) on the yield and grain quality ex-farm of spring malting barley (cv. Blenheim). Early sowing (January or February) was not possible in 1990 and 1991 due to wet weather. Sowing date had a pronounced effect on grain yield and grain N content in all three years. In 1989 and 1992, the earliest-sown barley (January or February) gave significantly greater yields than latersown crops (March and April) in five of the six experiments. The earliest-sown barley gave the lowest grain N in all six experiments and there was a gradual and significant increase in grain N content as sowing date was delayed. In 1993 the earliest-sown barley (February) gave significantly lower yield and greater grain N than the March-sown crop in all three experiments. The lower yield of the February-sown barley in 1993 was due to the significantly reduced number of grains/ear. The Aprilsown barley gave significantly lower yield and greater grain N than the earlier-sown crops in eight out of the nine experiments. In 1989 and 1992 only one of the six experiments, Ferns 1992, gave a significant yield response to increased rate of N (125 kg/ha). But in 1993, 125 kg N/ha significantly increased grain yield in all three experiments and 150 kg N/ha gave a further significant increase in yield in two of the experiments. Increasing increments of fertilizer N significantly increased grain N in all nine experiments.


2010 ◽  
Vol 56 (2) ◽  
pp. 69-73
Author(s):  
Luděk HŘIVNA ◽  
Gregor TOMÁŠ ◽  
Viera ŠOTTNÍKOVÁ ◽  
Radim CERKAL ◽  
Pavel RYANT ◽  
...  

2004 ◽  
Vol 55 (2) ◽  
pp. 147 ◽  
Author(s):  
Hamit Kavak

The effect of sowing date on severity of scald and yield components of barley was studied over 2 years, using 15-day intervals between sowing dates under dryland conditions in Turkey. Disease severity was greatest at the first sowing time, and it decreased linearly at subsequent sowing times in both years. Disease did not develop on flag and second leaves for the third sowing date, and was not observed on any leaf after the fourth and fifth dates of sowing in 2000 and 2001, respectively. After the third sowing date, a decrease in total grain yield and yield components, number of ears per plant, grains per head, and plant height was observed in both infected and control plots. Yield was also reduced by scald and resulted in total grain yield reductions of 10.1% and 6.0% for the first and second sowing dates in 2000, and 16.2%, 9.2%, and 3.0% on the first 3 sowing dates in 2001, respectively. At the first 2 sowing dates only ears per plant was decreased by scald, with respective reductions of 8.3% and 4.4% in 2000, and 14.3% and 8.5% in 2001, when compared with the control plots.


2001 ◽  
Vol 49 (3) ◽  
pp. 293-297
Author(s):  
S. O. Bakare ◽  
M. G. M. Kolo ◽  
J. A. Oladiran

There was a significant interaction effect between the variety and the sowing date for the number of productive tillers, indicating that the response to sowing date varied with the variety. A significant reduction in the number of productive tillers became evident when sowing was delayed till 26 June in the straggling variety as compared to sowing dates in May. Lower numbers of productive tillers were also recorded when the sowing of the erect variety was further delayed till 10 July. The grain yield data showed that it is not advisable to sow the straggling variety later than 12 June, while sowing may continue till about 26 June for the erect variety in the study area.


1987 ◽  
Vol 108 (3) ◽  
pp. 609-615 ◽  
Author(s):  
I. Papastylianou ◽  
Th. Samios

SummaryUsing data from rotation studies in which barley or woollypod vetch were included, both cut for hay and preceding barley for grain, it is shown that forage barley gave higher dry-matter yield than woollypod vetch (3·74 v. 2·92 t/ha per year). However, the latter gave feedingstuff of higher nitrogen concentration and yield (86 kg N/ha per year for vetch v. 55 kg N/ha per year for barley). Rainfall was an important factor in controlling the yield of the two forages and the comparison between them in different years and sites. Barley following woollypod vetch gave higher grain yield than when following forage barley (2·36 v. 1·91 t/ha). Rotation sequences which included woollypod vetch had higher output of nitrogen (N) than input of fertilizer N with a positive value of 44–60 kg N/ha per year. In rotations where forage barley was followed by barley for grain the N balance between output and input was 5–6 kg N/ha. Total soil N was similar in the different rotations at the end of a 7-year period.


2012 ◽  
pp. 89-93
Author(s):  
Tamás Árendás ◽  
Zoltán Berzsenyi ◽  
Péter Bónis

The effect of crop production factors on the grain yield was analysed on the basis of three-factorial experiments laid out in a split-split-plot design. In the case of maize the studies were made as part of a long-term experiment set up in 1980 on chernozem soil with forest residues, well supplied with N and very well with PK. The effects of five N levels in the main plots and four sowing dates in the subplots were compared in terms of the performance of four medium early hybrids (FAO 200). In the technological adaptation experiments carried out with durum wheat, the N supplies were moderate (2010) or good (2011), while the P and K supplies were good or very good in both years. Six N top-dressing treatments were applied in the main plots and five plant protection treatments in the subplots to test the responses of three varieties. The results were evaluated using analysis of variance, while correlations between the variables were detected using regression analysis.The effect of the tested factors on the grain yield was significant in the three-factorial maize experiment despite the annual fluctuations, reflected in extremely variable environmental means. During the given period the effect of N fertilisation surpassed that of the sowing date and the genotype. Regression analysis on the N responses for various sowing dates showed that maize sown in the middle 10 days of April gave the highest yield, but the N rates required to achieve maximum values declined as sowing was delayed. In the very wet year, the yield of durum wheat was influenced to the greatest extent by the plant protection treatments, while N supplies and the choice of variety were of approximately the same importance.  In the favourable year the yielding ability was determined by topdressing and the importance of plant protection dropped to half,  while no  significant difference could be detected between the tested varieties. According to the results of regression analysis, the positive effect of plant protection could not be substituted by an increase in the N rate in either year. The achievement of higher yields was only possible by a joint intensification of plant protection and N fertilisation. Nevertheless, the use of more efficient chemicals led to a slightly, though not significantly, higher yield, with a lower N requirement. 


2018 ◽  
Vol 64 (No. 7) ◽  
pp. 310-316 ◽  
Author(s):  
Mirosavljevic Milan ◽  
Momcolovic Vojislava ◽  
Maksimovic Ivana ◽  
Putnik-Delic Marina ◽  
Pržulj Novo ◽  
...  

The aim of this study was to improve understanding of (1) the effect of genotypic and environmental factors on pre-anthesis development and leaf appearance traits of barley and wheat; (2) the relationship of these factors with grain yield, and (3) the differences between these two crops across different environments/sowing dates. Therefore, trials with six two-row winter barley and six winter wheat cultivars were carried out in two successive growing seasons on four sowing dates. Our study showed that the observed traits varied between species, cultivars and sowing dates. In both growing seasons, biomass at anthesis and grain yield declined almost linearly by delaying the sowing date. There was no clear advantage in grain yield of wheat over barley under conditions of later sowing dates. Generally, barley produced more leaf and had shorter phyllochron than wheat. Both wheat and barley showed a similar relationship between grain yield and different pre-anthesis traits.


2017 ◽  
Vol 10 (1) ◽  
pp. 117-124
Author(s):  
SK Mondal ◽  
MM Rahman

The experiment was conducted to find out the morpho-physiological variability in response to different sowing dates in four lines of Quality Protein Maize (QPM) in in the Field Laboratory of the Department of Crop Botany, Bangladesh Agricultural University, Mymensingh. The study was carried out with four lines of maize and two sowing dates, 15 November (T1) and 15 December, ((T2). Sowing date differed significantly in plant height, length of leaf blade, length of leaf sheath, leaf breadth, cob length, cob diameter, length of tassel, days to 50% tasselling, days to 50 % silking, days to maturity, number of cobs per plant, cob weight, number of grain per cob. 1000-seed weight, percent underdeveloped cob, total dry matter and grain yield, but did not differ in number of leaves and protein percent. The lines differed significantly among themselves in those characters except number of leaves per plant, length of leaf sheath, cob length, cob diameter, days to 50% tasselling, number of cobs per plants and number of grain per cob. The line Across 8666 (V2) and (V3) gave the highest grain yield 4.57 and 4.55 and the lowest from (V4) lines 4.41 tons per hectare. The 15 November sowing time (T1) gave the highest grain yield 4.86 tons per hectare. In case of interaction, the earlier planting time (T1) showed better performance with all lines. On the other hand, the highest yield was found from combination of line V2 and V3 with earlier planting time (T1).J. Environ. Sci. & Natural Resources, 10(1): 117-124 2017


2011 ◽  
Vol 40 (No. 4) ◽  
pp. 140-147 ◽  
Author(s):  
E. Germán S

The annual average area sown with barley (Hordeum vulgare) in South America during 1999–2003 was 795 000 ha. In Argentina, Brazil, Chile and Uruguay, two-rowed spring cultivars are used mostly for malt production. Research has been developed in private malting companies and official institutions supported by the industry. In Argentina, tolerance to drought and heat stress during grain filling are important in drier areas. Yield and malt extract had been improved in cultivars released from 1940 to 1998. In Brazil, progress in grain yield, grain size, malting quality, early maturity, and resistance to net blotch, powdery mildew, and leaf rust has been achieved by EMBRAPA and malting companies. Higher tolerance to soil acidity and resistance to spot blotch are required. Since 1976, malting barley breeding in INIA-Chile has improved grain yield, grain size, beer production efficiency, and resistance to scald, net blotch, stripe rust, and leaf rust. Uruguay produces high quality malt exported mainly to Brazil. Malting companies have released locally bred and introduced cultivars since the early 1970’s. Initiated in 1988, INIA-Uruguay breeding program has improved yield, malting quality, and lodging and disease resistance. Fusarium head blight is a new challenge for research in Brazil and Uruguay. Information regarding malting barley production, the most important stresses in different areas of production, and breeding progress under South American conditions is provided.  


Sign in / Sign up

Export Citation Format

Share Document