The influence of lime application on the chemical and physical characteristics of acidic grassland soils with impeded drainage

Author(s):  
D. Corbett ◽  
D. P. Wall ◽  
M. B. Lynch ◽  
P. Tuohy

Abstract Soil acidity and poor nutrient use efficiency are major limiting factors as regards output potential on heavy soils, soils which are dominated by high proportions of clay and organic matter, with impeded drainage, high buffering capacity and located in high rainfall areas. Lime is applied in order to counteract these limiting factors and in turn improve agricultural output and productivity. The current study investigates the effects of two commonly used lime products at three comparable treatment rates, ground lime (7.5, 5 and 2.5 tonne/ha) and granulated lime (7.5, 2.5 and 1.5 tonne/ha), applied across three distinct sites. The ability of each lime product and treatment rate to counteract soil acidity, increase nutrient availability and influence soil physical structure was assessed over time. On average across sites, 1 tonne/ha of each lime product increased soil pH by 0.15 and 0.21 pH units between ground and granulated lime, respectively. Site 3 experienced the greatest increase change in soil pH in comparison to the other two sites, largely due to lower clay content and cation exchange capacity. Granulated lime was 5.7 times more expensive than ground lime in its ability to reduce soil acidity. The high treatment rate showed the greatest reduction in soil acidity, aluminium and iron concentration as a mean across all sites. Morgan's soil test phosphorus concentration increased across all sites, with treatment rates having no effect on the rate of increase. There was evidence of reduced soil compaction and lime application showed no negative implication on soil physical structure.

1991 ◽  
Vol 31 (6) ◽  
pp. 811 ◽  
Author(s):  
PJ Dolling ◽  
WM Porter ◽  
AD Robson

The effect of aluminium (Al) toxicity of either surface or subsurface soil on the growth of barley, and the potential for variation in response to soil acidity among agronomically adapted Australian barley genotypes, were examined at 13 sites. The effect of Al toxicity was investigated by plant analysis, using 3-5 lime application rates and Al-tolerant species (wheat, triticale), as well as barley. All cereals were supplied with complete nutrients. To measure the potential for response variation, grain yields of 14 genotypes of barley, relative to cv. Stirling, were related to soil pH at 7 sites. Grain yield of barley was increased 9-30% at 6 sites, by lime application alleviating A1 toxicity. The yield of triticale and wheat cv. Aroona was not increased by lime application at any site. There was some indication that subsurface acidity may be reducing the grain yield of barley at sites with CaCl2-extractable Al concentrations of 23-4 mg/g in the A2 horizon. Some barley genotypes appeared to be more tolerant than Stirling to soil acidity. Aluminium toxicity appears to be reducing barley grain yields by more than 10% at surface soil pH <4.5 (0.01 mol CaCl2/L), or when CaCl2-extractable Al is >3-4 mg/g. CaCl2-extractable A1 in the surface soil was not a better indicator of Al toxicity than soil pH.


2020 ◽  
Vol 6 (2) ◽  
pp. 50-55
Author(s):  
Noor Khamidah ◽  
Riza Adrianoor Saputra

Tidal swamp land is one type of wetland in South Kalimantan, where the water level is influenced by the season/rainfall. Based on the puddle level and duration, tidal swamp land has three typologies, namely shallow tidal swamp, middle tidal swamp, and deep tidal swamp. The wetlands in Ampukung village are classified in tidal swamps.  Most of the tidal swamps have been utilized for agricultural activities, especially rice. Till now, rice farming in the tidal swamps of Ampukung village has not experienced any significant problems. In 2016, the rice harvest in Ampukung village exceeded the target of South Kalimantan. This success is considered to be increased by planting twice a year. However, some issues need to be addressed regarding the characteristics of the land in Ampukung village. Soil fertility, especially soil acidity, is one of the limiting factors in the utilization of tidal swamp land. Therefore, it is necessary to identify the acidity of the soil in the tidal swamp of Ampukung village. The acidity data is basic information to determine the condition of soil fertility to achieve the target of planting rice twice a year. This information will be presented in the form of a map to assist users in interpreting the research data. This study found that the soil pH in the tidal swamp lands of Ampukung Village, which was planted with rice, was highly acidic and homogeneously distributed.


1969 ◽  
Vol 62 (3) ◽  
pp. 224-231
Author(s):  
Raúl Pérez-Escolar ◽  
M. A. Lugo-López ◽  
T. W. Scott

The effects of lime applied at 20, 40, and 60 cm depths, and calcium nitrate applied in the top 20 cm, in terms of yield of two soybean crops, Jupiter variety, and on the factors of soil acidity in Humatas clay (a typical upland Ultisol of Puerto Rico) were determined. Highly significant and significant correlations between soybean yield and factors of soil acidity of the topmost 60 cm of the soil profile were measured in the first and second crops, respectively. A straight line equation best described the results. As long as 33 months following the lime application in treatments bearing lime in the top 20 cm layer, increases of soil pH and bases and subsequent decreases in the exchangeable aluminum content of the 20 to 40 cm layer beneath were evident and indicative of lime movement.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1541
Author(s):  
Shiferaw Tafesse ◽  
Ciska Braam ◽  
Barbara van Mierlo ◽  
Berga Lemaga ◽  
Paul C. Struik

Soil acidity is one of the main constraints to crop production worldwide. In Ethiopia, the problem of soil acidity has been increasing. Currently, more than 40% of cultivated land in the country has a soil pH < 5.5. Recently, bacterial wilt (caused by Ralstonia solanacearum) has become a serious problem, reaching epidemic levels in some of the major potato growing districts in the country. However, it is currently unknown if the current outbreak of bacterial wilt in potato production is associated with soil acidification or not. To examine the association between bacterial wilt and soil acidification, we conducted a field survey and field experiments and detected and characterised R. solanacearum strains. The study showed that 50% of potato fields were very strongly acidic (pH 4.5–5.0) and bacterial wilt incidence was higher in potato fields with low soil pH. The field experiments indicated that lime application significantly increased soil pH (p < 0.001) and reduced bacterial wilt incidence (p < 0.001). The more lime was applied, the stronger the positive effect on soil pH and the stronger the reduction in bacterial wilt incidence. Bacterial wilt incidence was on average 10.8% under 12 t/ha lime application, while it was about 40% in control plots (without lime) after 90 days. All R. solanacearum strains isolated from the symptomatic potato plants were Phylotype II. Our findings show that the current outbreak of bacterial wilt in Ethiopia is associated with soil acidification. They add to the understanding of the risk factors for bacterial wilt in potato. Aside from farm hygiene, sanitation and cultural practices, addressing soil acidification using lime needs to be considered as an additional component of an integrated package to deal with bacterial wilt in potato under acidic soil conditions.


1977 ◽  
Vol 57 (2) ◽  
pp. 197-203 ◽  
Author(s):  
W. A. RICE ◽  
D. C. PENNEY ◽  
M. NYBORG

The effects of soil acidity on nitrogen fixation by alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) were investigated in field experiments at 28 locations, and in greenhouse experiments using soils from these locations. The pH of the soils (limed and unlimed) varied from 4.5 to 7.2. Rhizobia populations in the soil, nodulation, and relative forage yields (yield without N/yield with N) were measured in both the field and greenhouse experiments. Rhizobium meliloti numbers, nodulation scores, and relative yields of alfalfa decreased sharply as the pH of the soils decreased below 6.0. For soils with pH 6.0 or greater, there was very little effect of pH on any of the above factors for alfalfa. Soil pH in the range studied had no effect on nodulation scores and relative yields of red clover. However, R. trifolii numbers were reduced when the pH of the soil was less than 4.9. These results demonstrate that hydrogen ion concentration is an important factor limiting alfalfa growth on acid soils of Alberta and northeastern British Columbia, but it is less important for red clover. This supports the continued use of measurements of soil pH, as well as plant-available Al and Mn for predicting crop response to lime.


1977 ◽  
Vol 57 (2) ◽  
pp. 157-164 ◽  
Author(s):  
D. C. PENNEY ◽  
M. NYBORG ◽  
P. B. HOYT ◽  
W. A. RICE ◽  
B. SIEMENS ◽  
...  

The amount of cultivated acid soil in Alberta and northeastern British Columbia was estimated from pH values of farm samples analyzed by the Alberta Soil Testing Laboratory, and the effect of soil acidity on crops was assessed from field experiments on 28 typical acid soils. The field experiments consisted of two cultivars of barley (Hordeum vulgare L.) and one cultivar each of rapeseed (Brassica campestris L.), red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) grown with and without lime for 2 yr. There are about 30,000 ha of soils with a pH of 5.0 or less where soil acidity seriously restricts yields of all four crop species. There are approximately 300,000 ha with a soil pH of 5.1–5.5 where liming will on the average increase yields of alfalfa by 100%, yields of barley by 10–15%, and yields of rapeseed and red clover by 5–10%. There are a further 1,600,000 ha where soil pH ranges from 5.6 to 6.0 and liming will increase yields of alfalfa by approximately 50% and yields of barley, rapeseed and red clover by at least 4–5%.


1998 ◽  
Vol 78 (3) ◽  
pp. 477-479 ◽  
Author(s):  
C. J. Westman ◽  
S. Jauhiainen

Forest soil pH in southwest Finland was measured with identical sampling and analysing methods in 1970 and 1989. The acidity of the organic humus layer increased significantly as pH values measured on water and on salt suspensions decreased between the two sampling dates. For the mineral soil layers, no unambiguous trend was found. pH values measured on salt suspension tended to be unchanged or lower, while pH on water suspension in some soil layers were even higher in 1989 than in 1970. Key words: pH, repeated sampling


Author(s):  
Márcia H. Beck ◽  
Pedro A. V. Escosteguy ◽  
Deborah P. Dick

ABSTRACT The effect of humic acids (HA) on phosphorus (P) availability is still contradictory; thus, it is necessary to identify the conditions that play a crucial role in this effect. The aim of this study was to investigate the effect of HA application, combined with doses of P, on the content of this nutrient in a Latosol with and without acidity correction. Two experiments were carried out, one with HA from peat and another with HA from mineral charcoal (leonardite). Doses of these acids (0; 1.12 and 5.62 mg C g-1 of soil) and P (26.2 and 104.7 mg P g-1 of soil, 1 and 4-fold higher than recommended, respectively) were tested at soil pH 4.5 and 7.0, in a three-factorial design. The soil was incubated for 20 days and the soil-P content was measured by Mehlich-1 and remaining-P tests. The effect of HAs on P availability varied with the P doses and soil acidity. Humic acids application increases P content in Latosol when P dose is higher than recommended and there is no acidity correction (pH 4.5). However, there is no effect of HAs application on soil-P content when applying the recommended amount of this nutrient, irrespective of the pH value.


2004 ◽  
Vol 265 (1-2) ◽  
pp. 101-109 ◽  
Author(s):  
Meng Cifu ◽  
Lu Xiaonan ◽  
Cao Zhihong ◽  
Hu Zhengyi ◽  
Ma Wanzhu

2016 ◽  
Author(s):  
Abdulaha-Al Baquy ◽  
Jiu-Yu Li ◽  
Chen-Yang Xu ◽  
Khalid Mehmood ◽  
Ren-Kou Xu

Abstract. Soil acidity has become a serious constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. Regardless of other common existing concerns in acidic Ultisols of southern China, it needs to be investigated whether soil acidity has any effect on wheat and canola growth. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study was to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui were conducted for wheat and canola crops in a controlled growth chamber, with a completely randomized design. A soil pH gradient ranging from 3.7 (Hunan) and 3.97 (Anhui) to 6.5, with three replications, was used as a treatment. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg−1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 2.36 cmol kg−1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.


Sign in / Sign up

Export Citation Format

Share Document