Modulated rotating waves in an enclosed swirling flow

2002 ◽  
Vol 465 ◽  
pp. 33-58 ◽  
Author(s):  
H. M. BLACKBURN ◽  
J. M. LOPEZ

The loss of axisymmetry in a swirling flow that is generated inside an enclosed cylindrical container by the steady rotation of one endwall is examined numerically. The two dimensionless parameters that govern these flows are the cylinder aspect ratio and a Reynolds number associated with the rotation of the endwall. This study deals with a fixed aspect ratio, height/radius = 2.5. At low Reynolds numbers the basic flow is steady and axisymmetric; as the Reynolds number increases the basic state develops a double recirculation zone on the axis, so-called vortex breakdown bubbles. On further increase in the Reynolds number the flow becomes unsteady through a supercritical Hopf bifurcation but remains axisymmetric. After the onset of unsteadiness, another two unsteady axisymmetric solution branches appear with further increase in Reynolds number, each with its own temporal characteristic: one is periodic and the other is quasi-periodic with a very low frequency modulation. Solutions on these additional branches are unstable to three-dimensional perturbations, leading to nonlinear modulated rotating wave states, but with the flow still dominated by the corresponding underlying axisymmetric mode. A study of the flow behaviour on and bifurcations between these solution branches is presented, both for axisymmetric and for fully three-dimensional flows. The presence of modulated rotating waves alters the structure of the bifurcation diagram and gives rise to its own dynamics, such as a truncated cascade of period doublings of very-low-frequency modulated states.

2002 ◽  
Vol 459 ◽  
pp. 347-370 ◽  
Author(s):  
E. SERRE ◽  
P. BONTOUX

Time-dependent swirling flows inside an enclosed cylindrical rotor–stator cavity with aspect ratio H/R = 4, larger than the ones usually considered in the literature, are studied. Within a certain range of governing parameters, vortex breakdown phenomena can arise along the axis. Very recent papers exhibiting some particular three-dimensional effects have stimulated new interest in this topic. The study is carried out by a numerical resolution of the three-dimensional Navier–Stokes equations, based on high-order spectral approximations in order to ensure very high accuracy of the solutions.The first transition to an oscillatory regime occurs through an axisymmetric bifurcation (a supercritical Hopf bifurcation) at Re = 3500. The oscillatory regime is caused by an axisymmetric mode of centrifugal instability of the vertical boundary layer and the vortex breakdown is axisymmetric, being composed of two stationary bubbles. For Reynolds numbers up to Re = 3500, different three-dimensional solutions are identified. At Re = 4000, the flow supports the k = 5 mode of centrifugal instability. By increasing the rotation speed to Re = 4500, the vortex breakdown evolves to an S-shaped type after a long computational time. The structure is asymmetric and gyrates around the axis inducing a new time-dependent regime. At Re = 5500, the structure of the vortex breakdown is more complex: the upper part of the structure takes a spiral form. The maximum rotation speed is reached at Re = 10000 and the flow behaviour is now chaotic. The upper structure of the breakdown can be related to the spiral-type. Asymmetric flow separation on the container wall in the form of spiral arms of different angles is also prominent.


1970 ◽  
Vol 185 (1) ◽  
pp. 407-424 ◽  
Author(s):  
H. R. M. Craig ◽  
H. J. A. Cox

A comprehensive method of estimating the performance of axial flow steam and gas turbines is presented, based on analysis of linear cascade tests on blading, on a number of turbine test results, and on air tests of model casings. The validity of the use of such data is briefly considered. Data are presented to allow performance estimation of actual machines over a wide range of Reynolds number, Mach number, aspect ratio and other relevant variables. The use of the method in connection with three-dimensional methods of flow estimation is considered, and data presented showing encouraging agreement between estimates and available test results. Finally ‘carpets’ are presented showing the trends in efficiencies that are attainable in turbines designed over a wide range of loading, axial velocity/blade speed ratio, Reynolds number and aspect ratio.


2000 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Three-dimensional, time-dependent thermocapillary convection in open cylindrical containers is investigated numerically. Results for aspect ratios (Ar) of 1, 2.5, 8, and 16 and a Prandtl number of 6.84 are obtained to compare the results of numerical simulations with ongoing experiments. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re). Transition to oscillatory states occurs at critical values of Re which depend on Ar. With Ar = 1.0 and 2.5, we observe, respectively, 5 and 9 azimuthal wavetrains travelling clockwise at the free surface near the critical Re. With Ar = 8.0 and 16.0, there are substantially more, but pulsating waves near the critical Re. In the case of Ar = 16.0, which approaches the conditions in an infinite layer, our results are in good agreement with linear theory. While the critical Reynolds number decreases with increasing aspect ratio in the case of azimuthal rotating waves, it increases with increasing aspect ratio in the case of azimuthal pulsating waves. The critical frequency of temperature oscillations is found to decrease linearly with increasing Ar. We have also computed supercritical time-dependent states and find that while the frequency increases with increasing Re near the critical region, the frequency of supercritical convection decreases with Re.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
V. S. Duryodhan ◽  
Shiv Govind Singh ◽  
Amit Agrawal

Aspect ratio is an important parameter in the study of flow through noncircular microchannel. In this work, three-dimensional numerical study is carried out to understand the effect of cross aspect ratio (height to width) on flow in diverging and converging microchannels. Three-dimensional models of the diverging and converging microchannels with angle: 2–14 deg, aspect ratio: 0.05–0.58, and Reynolds number: 130–280 are employed in the simulations with water as the working fluid. The effects of aspect ratio on pressure drop in equivalent diverging and converging microchannels are studied in detail and correlated to the underlying flow regime. It is observed that for a given Reynolds number and angle, the pressure drop decreases asymptotically with aspect ratio for both the diverging and converging microchannels. At small aspect ratio and small Reynolds number, the pressure drop remains invariant of angle in both the diverging and converging microchannels; the concept of equivalent hydraulic diameter can be applied to these situations. Onset of flow separation in diverging passage and flow acceleration in converging passage is found to be a strong function of aspect ratio, which has not been shown earlier. The existence of a critical angle with relevance to the concept of equivalent hydraulic diameter is identified and its variation with Reynolds number is discussed. Finally, the effect of aspect ratio on fluidic diodicity is discussed which will be helpful in the design of valveless micropump. These results help in extending the conventional formulae made for uniform cross-sectional channel to that for the diverging and converging microchannels.


2007 ◽  
Vol 339 ◽  
pp. 377-381
Author(s):  
Xiao Quan Zhang ◽  
L. Tian

Micro Air Vehicles (MAVs) are catching more and more attentions for their broad application in civilian and military fields. Since the theories on the aerodynamics of low Reynolds number are not maturely presented and the wind-tunnel experiments cost long periods and great expenses. The numerical simulation based on computational fluid dynamics (CFD) is a good method to choose. Through three-dimensional simulation of the wings, the aerodynamic characteristics of the flows around MAVs can be easily obtained. The tip vortices produced around low-Reynolds-number and low-aspect-ratio wings can increase the lift and stall angles. The result of numerical simulation can be used as references of theory analysis and wind-tunnel experiments.


2017 ◽  
Vol 835 ◽  
pp. 86-101 ◽  
Author(s):  
Lorenz Hufnagel ◽  
Jacopo Canton ◽  
Ramis Örlü ◽  
Oana Marin ◽  
Elia Merzari ◽  
...  

Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. Here we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through a $90^{\circ }$ pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $Re=11\,700$, corresponding to a friction Reynolds number $Re_{\unicode[STIX]{x1D70F}}\approx 360$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.


1965 ◽  
Vol 23 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Yun-Yuan Shi

The results of Proudman & Pearson (1957) and Kaplun & Lagerstrom (1957) for a sphere and a cylinder are generalized to study an ellipsoid of revolution of large aspect ratio with its axis of revolution perpendicular to the uniform flow at infinity. The limiting case, where the Reynolds number based on the minor axis of the ellipsoid is small while the other Reynolds number based on the major axis is fixed, is studied. The following points are deduced: (1) although the body is three-dimensional the expansion is in inverse power of the logarithm of the Reynolds number as the case of a two-dimensional circular cylinder; (2) the existence of the ends and the variation of the diameter along the axis of revolution have no effect on the drag to the first order; (3) a formula for drag is obtained to higher order.


Sign in / Sign up

Export Citation Format

Share Document