The effect of waves on subgrid-scale stresses, dissipation and model coefficients in the coastal ocean bottom boundary layer

2007 ◽  
Vol 583 ◽  
pp. 133-160 ◽  
Author(s):  
W. A. M. NIMMO SMITH ◽  
J. KATZ ◽  
T. R. OSBORN

Six sets of particle image velocimetry (PIV) data from the bottom boundary layer of the coastal ocean are examined. The data represent periods of high, moderate and weak mean flow relative to the amplitude of wave-induced motion, which correspond to high, moderate and low Reynolds numbers based on the Taylor microscale (Re). The two-dimensional PIV velocity distributions enable spatial filtering to calculate some of the subgrid-scale (SGS) stresses, from which we can estimate the SGS dissipation, and evaluate the performance of typically used SGS stress models. The previously reported mismatch between the SGS and viscous dissipation at moderate and low Reynolds numbers appears to be related to the sparsity of large vortical structures that dominate energy fluxes.Conditional sampling of SGS stresses and dissipation based on wave phase using Hilbert transforms demonstrate persistent and repeatable direct effects of large-scale but weak straining by the waves on the SGS energy flux at small scales. The SGS energy flux is phase-dependent, peaking when the streamwise-wave-induced velocity is accelerating, and lower when this velocity is decelerating. Combined with strain rate generated by the mean flow, the streamwise wave strain causes negative energy flux (backscatter), whereas the vertical wave strain causes a positive flux. The phase-dependent variations and differences between horizontal and vertical contributions to the cascading process extend to strains that are substantially higher than the wave-induced motion. These trends may explain the measured difference between spatial energy spectra of streamwise velocity fluctuations and spectra of the wall-normal component, i.e. the formation of spectral bumps in the spectra of the streamwise component at the wavenumbers for the transition between inertial and dissipation scales.All the model coefficients of typical SGS stress models measured here are phase dependent and show similar trends. Thus, the variations of measured SGS dissipation with phase are larger than those predicted by the model variables. In addition, the measured coefficients of the static Smagorinsky SGS stress model decrease with decreasing turbulence levels, and increase with filter size. The dynamic model provides higher correlation coefficients than the Smagorinsky model, but the substantial fluctuations in their values indicate that ensemble averaging is required. The ‘global’ dynamic model coefficients indicate that the use of a scale-dependent dynamic model may be appropriate. The structure function model yields poor correlation coefficients and is found to be over-dissipative under all but the highest turbulence levels. The nonlinear model has higher correlations with measured stresses, as expected, but it also does not reproduce the trends with wave phase.

1989 ◽  
Vol 111 (3) ◽  
pp. 212-221 ◽  
Author(s):  
S. C. van Dreumel ◽  
G. D. C. Kuiken

Velocity profiles and the pressure drop across two mild (62 percent) coronary stenoses in series have been investigated numerically and experimentally in a perspex-tube model. The mean flow rate was varied to correspond to a Reynolds number range of 50–400. The pressure drop across two identical (62 percent) stenoses show that for low Reynolds numbers the total effect of two stenoses equals that of two single stenoses. A reduction of 10 percent is found for the higher Reynolds numbers investigated. Numerical and experimental results obtained for the velocity profiles agree very well. The effect of varying the converging angle of a single mild (62 percent) coronary stenosis on the fluid flow has been determined numerically using a finite element method. Pressure-flow relation, especially with respect to relative short stenoses, is discussed.


1995 ◽  
Vol 286 ◽  
pp. 291-325 ◽  
Author(s):  
Knut H. Bech ◽  
Nils Tillmark ◽  
P. Henrik Alfredsson ◽  
Helge I. Andersson

The turbulent structure in plane Couette flow at low Reynolds numbers is studied using data obtained both from numerical simulation and physical experiments. It is shown that the near-wall turbulence structure is quite similar to what has earlier been found in plane Poiseuille flow; however, there are also some large differences especially regarding Reynolds stress production. The commonly held view that the maximum in Reynolds stress close to the wall in Poiseuille and boundary layer flows is due to the turbulence-generating events must be modified as plane Couette flow does not exhibit such a maximum, although the near-wall coherent structures are quite similar. For two-dimensional mean flow, turbulence production occurs only for the streamwise fluctuations, and the present study shows the importance of the pressure—strain redistribution in connection with the near-wall coherent events.


Author(s):  
WH Ho ◽  
TH New

An unsteady, two-dimensional numerical study was conducted to investigate the aerodynamic and flow characteristics of two bio-inspired corrugated airfoils at Re = 14,000 and compared with those of a smooth NACA0010 airfoil. Mean aerodynamic results reveal that the corrugated airfoils have better lift performance compared to the NACA0010 airfoil but incur slightly higher drag penalty. Mean flow streamlines indicate that this favourable performance is due to the ability of the corrugated airfoils in mitigating large-scale flow separations and stall. Unsteady flow field results show persistent formations of small recirculating vortices that remain within the corrugations at 10° angle-of-attack or less for one of the corrugated airfoil and below 15° for the other. In contrast, the flow behaviour can be highly turbulent with regular pairings of large-scale flow separation vortices along the upper surface at higher angles-of-attack. This not only disrupts the small recirculating vortices and causes them to detach from the corrugated surfaces, but it gets increasingly dominant at higher angles-of-attack resulting in regular lift and drag oscillations. At the end of each cycle, there is a sudden ejection of flow perpendicular to the airfoil surface and these disruptions manifest themselves as “kinks” in the instantaneous lift and drag of the corrugated airfoils. Therefore instead of regular fluctuations, the lift and drag curves have additional undulations. Despite that, the corrugations are able to produce larger pressure differentials between the upper and lower surfaces than the smooth airfoil. The current study demonstrates the intricate relationships between different sharp surface corrugations and favourable aerodynamic performance. In particular, results from this paper supports earlier investigations that corrugated airfoils may be used to good effects even at low Reynolds numbers, where flow separations are more likely.


2004 ◽  
Author(s):  
Assaf Nahum ◽  
Avraham Seifert

A method for exploiting hydrodynamic instability for enhancement of micro-mixing is proposed, studied numerically and demonstrated experimentally. The confined twin-jet geometry is selected as the baseline unstable flow, since it undergoes a Hopf bifurcation at low Reynolds numbers. It is shown that by adding weak fluidic perturbation to the mean flow, significant amplification of unstable modes results, leading to enhanced mixing in laminar flow. Good agreement was found between Computational Fluid Dynamics (CFD) and experimental results for the critical Re, for which instability sets-in, and its related Struohal number. In order to evaluate mixing efficiency, backward tracing particle was performed using the computed flow field. Mixing is estimated based on particle’s location in time and space. A parametric mixing study was performed and its results are presented and discussed. It is shown that mixing was significantly enhanced when the perturbation frequency was matched with the baseline’s most-unstable Struohal number, even for sub-critical Reynolds number.


1976 ◽  
Vol 75 (1) ◽  
pp. 173-191 ◽  
Author(s):  
Christopher Brennen

When fluid in an annulus between two cylinders is set in motion by whirling movements of one or both of the cylinders, dynamic forces are imposed by the fluid on the cylinders. Knowledge of these forces is frequently important, indeed often critical, to the engineer designing rotor systems or journal bearings. Quite general solutions of the Navier-Stokes equations are presented for this problem and are limited only by restrictions on the amplitude of the whirl motion. From these solutions, the forces are derived under a wide variety of circumstances, including large and small annular widths, high and low Reynolds numbers and with and without a mean flow created by additional net rotation of one or both of the cylinders.


1971 ◽  
Vol 46 (4) ◽  
pp. 749-756 ◽  
Author(s):  
M. Gaster

Experiments on slightly tapered models of circular cross-section have shown that the vortex wake structure exists in a number of discrete cells having different shedding frequencies. Within each cell shedding is regular and periodic, the frequency being somewhat lower than that from a parallel cylinder of the same diameter. A similar type of wake behaviour has also been observed on a parallel model in a non-uniform mean flow. These results suggest that the discontinuities in the shedding law observed by Tritton could arise through non-uniformities in the flow.


1989 ◽  
Vol 111 (3) ◽  
pp. 206-211 ◽  
Author(s):  
D. J. Griffiths

In steady flow through nonuniform collapsible tubes a key concept is the compressive zone, at which flow limitation can occur at both high and low Reynolds numbers. Ureteral peristalsis can be considered as a series of compressive zones, corresponding to waves of active muscular contraction, that move at near-constant speed along the ureter towards the bladder. One-dimensional, lubrication-theory analysis shows that peristalsis can pump urine from kidney into the bladder only at relatively low mean rates of urine flow. Under these circumstances isolated boluses of urine are propelled steadily through the ureter (assumed uniform) by the contraction waves. At higher mean rates of flow the behavior depends on whether the frequency of peristalsis is higher or lower than a critical value. For frequencies above the critical value steady propagation of boluses that are in contact with contraction waves at both ends is possible. As the flow rate rises the urine begins to leak through the contraction waves and steady peristaltic flow breaks down. There is an upper limit to the mean flow rate that can be carried by steady peristalsis, which depends on the mechanical properties of the ureter. At high flow rates the peristaltic contractions do not pump but hinder the flow of urine through the ureter.


2014 ◽  
Vol 629 ◽  
pp. 48-54 ◽  
Author(s):  
Matthew James Marino ◽  
Simon Watkins ◽  
Roberto Sabatini ◽  
Alessandro Gardi

Experiments at low Reynolds numbers were performed on a pressure tapped NACA 2313 wing in a 3 x 2 x 9 meter wind tunnel under nominally smooth (Ti = 1.2%) and turbulent (Ti = 7.2%) flows at a mean flow velocity of 8ms-1(Re ≈120,000). The NACA 2313 wing is a replica of Micro Air Vehicle (MAV) wing of the Flash 3D aircraft used at RMIT University for research purposes. Unsteady surface pressures were measured to understand if the information could be adopted for resolving turbulence-induced perturbations and to furthermore use it in a turbulence mitigation system. Two span-wise locations of chord-wise pressure were acquired when tested under the two different flow conditions. It was discovered that at both span-wise locations, a local Coefficient of Pressure (Cp) held high correlation to the chord-wise Cp integration and allowed for a linear relationship to be formed between the two variables. The defined relationship provided a 95% confidence for angles of attack below stall and was used to estimate the integrated chord-wise pressure coefficient at a particular span wise location. The relationship between a single pressure tap and the integrated Cp of that chord-wise section was valid for the two different span-wise locations with similar defining equations. As one pressure tap is sufficient to adequately estimate the integrated Cp on a chord-wise wing section, a limited amount of pressure taps across the wings span approximates the pressure distribution across the span and eventually approximates the flight perturbations. Being a novel method of sensing aircraft disturbance, applications are not restricted to MAV. The methodology presented could very well be applied to larger aircraft to reduce the effects of turbulence within the terminal area and can provide other means of active stabilization.


1971 ◽  
Vol 49 (1) ◽  
pp. 193-205 ◽  
Author(s):  
Robert P. Davies-Jones

We investigate the behaviour of infinitesimal perturbations introduced into an unstably stratified horizontal Couette flow. We assume that the fluid is Boussinesq and contained in an infinite conducting rectangular channel which is uniformly heated from below. The sidewalls are rigid and the Couette flow is generated by moving them with equal and opposite velocities along the channel. The top and bottom are assumed to be free so that we can separate variables.Without shear, the preferred modes of convection closely resemble transverse ‘finite rolls’ (Davies-Jones 1970). Shear increases the critical wavelength so that the preferred modes become longitudinally elongated cells, or even longitudinal rolls in some cases. The critical Rayleigh number increases quite rapidly at fist with Reynolds number, but at higher Reynolds numbers it levels off to a constant value (which cannot be greater than the shear-independent Rayleigh number at which longitudinal disturbances fist become unstable).We also find that the disturbances are tilted in the same direction as the shear, and that the marginally stable ones transfer kinetic energy from the mean flow to the perturbations. Except at low Reynolds numbers, the long wave perturbations gain more energy through the conversion of mean flow kinetic energy than through the release of potential energy, even though the instability is convective in origin.


Sign in / Sign up

Export Citation Format

Share Document