Steady, unsteady and transient vortex-induced vibration predicted using controlled motion data

2010 ◽  
Vol 649 ◽  
pp. 429-451 ◽  
Author(s):  
T. L. MORSE ◽  
C. H. K. WILLIAMSON

In this study, we represent transient and unsteady dynamics of a cylinder undergoing vortex-induced vibration, by employing measurements of the fluid forces for a body controlled to vibrate sinusoidally, transverse to a free stream. We generate very high-resolution contour plots of fluid force in the plane of normalized amplitude and wavelength of controlled oscillation. These contours have been used with an equation of motion to predict the steady-state response of an elastically mounted body. The principal motivation with the present study is to extend this approach to the case where a freely vibrating cylinder exhibits transient or unsteady vibration, through the use of a simple quasi-steady model. In the model, we use equations which define how the amplitude and frequency will change in time, although the instantaneous forces are taken to be those measured under steady-state conditions (the quasi-steady approximation), employing our high-resolution contour plots.The resolution of our force contours has enabled us to define mode regime boundaries with precision, in the amplitude–wavelength plane. Across these mode boundaries, there are discontinuous changes in the fluid force measurements. Predictions of free vibration on either side of the boundaries yield distinct response branches. Using the quasi-steady model, we are able to characterize the nature of the transition which occurs between the upper and lower amplitude response branches. This regime of vibration is of practical significance as it represents conditions under which peak resonant response is found in these systems. For higher mass ratios (m* > 10), our approach predicts that there will be an intermittent switching between branches, as the vortex-formation mode switches between the classical 2P mode and a ‘2POVERLAP’ mode. Interestingly, for low mass ratios (m* ~ 1), there exists a whole regime of normalized flow velocities, where steady-state vibration cannot occur. However, if one employs the quasi-steady model, we discover that the cylinder can indeed oscillate, but only with non-periodic fluctuations in amplitude and frequency. The character of the amplitude response from the model is close to what is found in free vibration experiments. For very low mass ratios (m* < 0.36 in this study), this regime of unsteady vibration response will extend all the way to infinite normalized velocity.

2012 ◽  
Vol 226-228 ◽  
pp. 146-149
Author(s):  
Zhong Jun Yin ◽  
Yan Shu Cao ◽  
Tian Han ◽  
Xiao Song Wang

The main purpose of the numerical simulation that described in this paper is to investigate the damping influence on vortex-induced vibration (VIV) system. By considering different damping ratios, the 1-dof vortex-induced vibration of a rigid cylinder with low mass ratio is investigated numerically by the RANS solver combined with SST turbulence model. Comparing of the simulation results that obtained under low damping ratio by J.S. Wang and experimental results which carried out by Williamson and Govardhan, it indicates that the computing model in this paper is reliable. In addition, by using our model we analyze the vibration under the other two damping ratios, including the corresponding amplitude response and frequency response. We observed significant frequency locking phenomenon under different damping conditions, and locking region decreases with increasing damping.


2016 ◽  
Author(s):  
Mohammad Mobasher Amini ◽  
Antonio Carlos Fernandes

Numerous experimental and numerical studies have been carried out to better understand and to improve prediction of cylinder VIV (vortex Induced Vibration) phenomenon. The behavior of cylinder due to in-line vibration (VIVx) has been neglected in the earlier studies because of its lower amplitude in comparison with cross flow vibration (VIVy). However, some researchers have studied VIVx in 2DOF along with VIVy. Recent investigations show that response amplitude of structure caused by VIVx is large enough to bring it to consideration. This study focuses on understanding the origin and prediction of VIVx amplitude exclusively in 1DOF and subcritical flow regime. The experiments were performed in current channel on bare circular cylinder with low mass-damping ratio in Reynolds number range Re = 10000 ∼ 45000.


Author(s):  
Sina Daneshvar ◽  
Chris Morton

Vortex induced vibration of a circular cylinder with low mass ratio in vicinity of a wall boundary is investigated experimentally in a water tunnel facility. Simultaneous measurements of the flow field via planar Particle Image Velocimetry and amplitude response have been carried out across a wide range of reduced velocities and cylinder-wall gap ratios (S* = S/D). For S* ≥ 3, both the amplitude response and the wake development are not significantly affected by the presence of the wall boundary. As S* is decreased below 3, the amplitude response decreases until S* ≈ 0.5, where the cylinder begins to periodically impact the wall. For all S* ≤ 0.5, the cylinder continues to impact the wall in a periodic fashion, and the reduced velocity range over which this occurs increases. Mean field and RMS field statistics revealed strong asymmetric wake development for S* < 3. Proper Orthogonal Decomposition of the velocity data was used to investigate the energy distribution in the coherent wake structures, and to filter the incoherent fluctuations via construction of a Reduced Order Model. Reconstructions of instantaneous vorticity fields obtained from the ROM illustrate the changes in vortex shedding patterns with the cylinder response.


Author(s):  
R. H. M. Ogink

A double Birkhoff wake oscillator for the modeling of vortex-induced vibration is presented in which the oscillating variables are assumed to be associated with the boundary layer/near wake and the far wake. The fluid forces are assumed to consist of a potential added mass force and a force due to vortex shedding. In the limit of vanishing incoming flow velocity, the model equations reduce to a form similar to the Morison equation. The results of the double wake oscillator have been compared with forced vibration measurements and free vibration measurements over a range of mass and damping ratios. The model is capable of describing the most important trends in both the forced and free vibration experiments. Specifically, the double wake oscillator is able to model both the upper and lower branch of free vibration.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2021 ◽  
Vol 922 (2) ◽  
pp. 122
Author(s):  
Kai Li ◽  
Qi-Qi Xia ◽  
Chun-Hwey Kim ◽  
Shao-Ming Hu ◽  
Di-Fu Guo ◽  
...  

Abstract The cutoff mass ratio is under debate for contact binaries. In this paper, we present the investigation of two contact binaries with mass ratios close to the low mass ratio limit. It is found that the mass ratios of VSX J082700.8+462850 (hereafter J082700) and 1SWASP J132829.37+555246.1 (hereafter J132829) are both less than 0.1 (q ∼ 0.055 for J082700 and q ∼ 0.089 for J132829). J082700 is a shallow contact binary with a contact degree of ∼19%, and J132829 is a deep contact system with a fill-out factor of ∼70%. The O − C diagram analysis indicated that the two systems manifested long-term period decreases. In addition, J082700 exhibits a cyclic modulation which is more likely resulting from the Applegate mechanism. In order to explore the properties of extremely low mass ratio contact binaries (ELMRCBs), we carried out a statistical analysis on contact binaries with mass ratios of q ≲ 0.1 and discovered that the values of J spin/J orb of three systems are greater than 1/3. Two possible explanations can interpret this phenomenon. One explanation is that some physical processes, unknown to date, are not considered when Hut presented the dynamic stability criterion. The other explanation is that the dimensionless gyration radius (k) should be smaller than the value we used (k 2 = 0.06). We also found that the formation of ELMRCBs possibly has two channels. The study of evolutionary states of ELMRCBs reveals that their evolutionary states are similar with those of normal W UMa contact binaries.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Anna Avramenko ◽  
Alexey Frolov ◽  
Jari Hämäläinen

The presented research demonstrates the results of a series of numerical simulations of gas flow through a single-stage centrifugal compressor with a vaneless diffuser. Numerical results were validated with experiments consisting of eight regimes with different mass flow rates. The steady-state and unsteady simulations were done in ANSYS FLUENT 13.0 and NUMECA FINE/TURBO 8.9.1 for one-period geometry due to periodicity of the problem. First-order discretization is insufficient due to strong dissipation effects. Results obtained with second-order discretization agree with the experiments for the steady-state case in the region of high mass flow rates. In the area of low mass flow rates, nonstationary effects significantly influence the flow leading stationary model to poor prediction. Therefore, the unsteady simulations were performed in the region of low mass flow rates. Results of calculation were compared with experimental data. The numerical simulation method in this paper can be used to predict compressor performance.


Sign in / Sign up

Export Citation Format

Share Document