Freely decaying two-dimensional turbulence

2010 ◽  
Vol 659 ◽  
pp. 351-364 ◽  
Author(s):  
S. FOX ◽  
P. A. DAVIDSON

High-resolution direct numerical simulations are used to investigate freely decaying two-dimensional turbulence. We focus on the interplay between coherent vortices and vortex filaments, the second of which give rise to an inertial range. We find that Batchelor's prediction for the inertial-range enstrophy spectrum Eω(k, t) ~ β2/3k−1, where β is the enstrophy dissipation rate, is reasonably well satisfied once the turbulence is fully developed, but that the assumptions which underpin the usual interpretation of his theory are not valid. For example, the lack of a quasi-equilibrium cascade means the enstrophy flux Πω(k) is highly non-uniform throughout the inertial range, thus the common assumption that β can act as a surrogate for Πω(k) becomes questionable. We present a variant of Batchelor's theory which accounts for the wavenumber-dependence of Πω; in particular we propose Eω(k, t) ~ Πω(k1)2/3k−1, where k1 is the wavenumber marking the start of the observed k−1 region of the enstrophy spectrum. This provides a better collapse of the data and, unlike Batchelor's original theory, can be justified on theoretical grounds. The basis for our proposal is the observation that the straining of the vortex filaments, which fuels the enstrophy flux through the inertial range, comes almost exclusively from the strain field of the coherent vortices, and this can be characterized by Πω(k1)1/3. Thus Eω(k) is a function of only k and Πω(k1) in the inertial range, and dimensional analysis then yields Eω ~ Πω(k1)2/3k−1. We also confirm the prediction by Davidson (Phys. Fluids, vol. 20, 2008, 025106) that in the inertial range Πω varies as Πω(k)/Πω(k1) = 1 − a−1 ln(k/k1), where a is a constant of order 1. This corresponds to ∂Eω/∂t ~ k−1. Surprisingly, the measured enstrophy fluxes imply that the dynamics of the inertial range as defined by the behaviour of Πω extend to wavenumbers much smaller than k1, but this is masked in Eω(k, t) by the presence of coherent vortices which also contribute to Eω in this region. In fact, we find that kEω(k, t) ≈ H(k) + A(t), or ∂Eω/∂t ~ k−1 in this extended low-k region, where H(k) is almost independent of time and represents the signature of the coherent vortices. In short, the inertial range defined by ∂Eω/∂t ~ k−1 or Πω(k) ~ ln(k) is much broader than the observed Eω ~ k−1 region.

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2410
Author(s):  
Jungmin Lee ◽  
Yesol Yun ◽  
Sang Hyun Lee ◽  
Jinyoung Hwang

Hybrid nanotube composite systems with two different types of fillers attract considerable attention in several applications. The incorporation of secondary fillers exhibits conflicting behaviors of the electrical conductivity, which either increases or decreases according to the dimension of secondary fillers. This paper addresses quantitative models to predict the electrical performance in the configuration of two dimensional systems with one-dimensional secondary fillers. To characterize these properties, Monte Carlo simulations are conducted for percolating networks with a realistic model with the consideration of the resistance of conducting NWs, which conventional computational approaches mostly lack from the common assumption of zero-resistance or perfect conducting NWs. The simulation results with nonperfect conductor NWs are compared with the previous results of perfect conductors. The variation of the electrical conductivity reduces with the consideration of the resistance as compared to the cases with perfect conducting fillers, where the overall electrical conductivity solely originates from the contact resistance caused by tunneling effects between NWs. In addition, it is observed that the resistance associated with the case of invariant conductivity with respect to the dimension of the secondary fillers increases, resulting in the need for secondary fillers with the increased scale to achieve the same electrical performance. The results offer useful design guidelines for the use of a two-dimensional percolation network for flexible conducting electrodes.


2007 ◽  
Vol 574 ◽  
pp. 429-448 ◽  
Author(s):  
ARMANDO BABIANO ◽  
ANTONELLO PROVENZALE

We study numerically the scale-to-scale transfers of enstrophy and passive-tracer variance in two-dimensional turbulence, and show that these transfers display significant differences in the inertial range of the enstrophy cascade. While passive-tracer variance always cascades towards small scales, enstrophy is characterized by the simultaneous presence of a direct cascade in hyperbolic regions and of an inverse cascade in elliptic regions. The inverse enstrophy cascade is particularly intense in clusters of small-scales elliptic patches and vorticity filaments in the turbulent background, and it is associated with gradient-decreasing processes. The inversion of the enstrophy cascade, already noticed by Ohkitani (Phys. Fluids A, vol. 3, 1991, p. 1598), appears to be the main difference between vorticity and passive-tracer dynamics in incompressible two-dimensional turbulence.


1987 ◽  
Vol 183 ◽  
pp. 379-397 ◽  
Author(s):  
Armando Babiano ◽  
Claude Basdevant ◽  
Bernard Legras ◽  
Robert Sadourny

The dynamics of vorticity in two-dimensional turbulence is studied by means of semi-direct numerical simulations, in parallel with passive-scalar dynamics. It is shown that a passive scalar forced and dissipated in the same conditions as vorticity, has a quite different behaviour. The passive scalar obeys the similarity theory à la Kolmogorov, while the enstrophy spectrum is much steeper, owing to a hierarchy of strong coherent vortices. The condensation of vorticity into such vortices depends critically both on the existence of an energy invariant (intimately related to the feedback of vorticity transport on velocity, absent in passive-scalar dynamics, and neglected in the Kolmogorov theory of the enstrophy inertial range); and on the localness of flow dynamics in physical space (again not considered by the Kolmogorov theory, and not accessible to closure model simulations). When space localness is artificially destroyed, the enstrophy spectrum again obeys a k−1 law like a passive scalar. In the wavenumber range accessible to our experiments, two-dimensional turbulence can be described as a hierarchy of strong coherent vortices superimposed on a weak vorticity continuum which behaves like a passive scalar.


1989 ◽  
Vol 206 ◽  
pp. 193-221 ◽  
Author(s):  
David G. Dritschel

An isolated strip of anomalous vorticity in a two-dimensional, inviseid, incompressible, unbounded fluid is linearly unstable - or is it? It is pointed out that an imposed uniform shear, opposing the shear due to the isolated strip alone, can prevent all linear instabilities if the imposed shear is of sufficient strength, and that this is highly relevant to current thinking about ‘two-dimensional turbulence’ and related problems. The linear stability result has been known and goes back to Rayleigh, but its implications for the behaviour of the thin strips of vorticity that are a ubiquitous feature of nonlinear two-dimensional flows, as revealed for instance in high-resolution experiments, appear not to have been widely recognized. In particular, these thin strips, or filaments, almost always behave quasi-passively when being wrapped around intense coherent vortices, and do not roll up into strings of miniature vortices as would an isolated strip. Nonlinear calculations presented herein furthermore show that substantially less adverse shear than suggested by linear theory is required to preserve a strip of vorticity. Taken together, and in conjunction with results showing the further stabilizing effect of a large-scale strain field, these results explain the observed quasi-passive behaviour.


2020 ◽  
Author(s):  
Béatrice Hasler ◽  
Yossi Hasson ◽  
Daniel Landau ◽  
Noa Schori Eyal ◽  
Jonathan Giron ◽  
...  

We present an experimental study conducted in the context of the Israeli-Palestinian conflict that examined the effect of immersive 360° video on inducing a more critical perception of the ingroup’s actions in the conflict. An immersive experience of a simulated conflict scenario filmed from the outgroup’s point of view led to the judgment of the ingroup actors’ behavior as less moral and less justified compared to watching the same scenario as a two-dimensional video. Contrary to expectation, this effect was not mediated through increased outgroup perspective-taking and empathy, but through higher levels of hostile emotions towards the ingroup actors, which in turn were influenced by an increased sense of presence and engagement in the immersive experience. These findings provide initial evidence for the still widely unexplored potential of virtual reality as a new method for conflict resolution but challenge the common assumption of the empathy-enhancing capacity of virtual reality.


NASPA Journal ◽  
1998 ◽  
Vol 35 (4) ◽  
Author(s):  
Jackie Clark ◽  
Joan Hirt

The creation of small communities has been proposed as a way of enhancing the educational experience of students at large institutions. Using data from a survey of students living in large and small residences at a public research university, this study does not support the common assumption that small-scale social environments are more conducive to positive community life than large-scale social environments.


Religions ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 222
Author(s):  
Elaine M. Fisher

This article makes the case that Vīraśaivism emerged in direct textual continuity with the tantric traditions of the Śaiva Age. In academic practice up through the present day, the study of Śaivism, through Sanskrit sources, and bhakti Hinduism, through the vernacular, are generally treated as distinct disciplines and objects of study. As a result, Vīraśaivism has yet to be systematically approached through a philological analysis of its precursors from earlier Śaiva traditions. With this aim in mind, I begin by documenting for the first time that a thirteenth-century Sanskrit work of what I have called the Vīramāheśvara textual corpus, the Somanāthabhāṣya or Vīramāheśvarācārasāroddhārabhāṣya, was most likely authored by Pālkurikĕ Somanātha, best known for his vernacular Telugu Vīraśaiva literature. Second, I outline the indebtedness of the early Sanskrit and Telugu Vīramāheśvara corpus to a popular work of early lay Śaivism, the Śivadharmaśāstra, with particular attention to the concepts of the jaṅgama and the iṣṭaliṅga. That the Vīramāheśvaras borrowed many of their formative concepts and practices directly from the Śivadharmaśāstra and other works of the Śaiva Age, I argue, belies the common assumption that Vīraśaivism originated as a social and religious revolution.


Author(s):  
Yunping Wu ◽  
Wei Wei ◽  
Tianyi Ding ◽  
Sheng Chen ◽  
Rui Zhai ◽  
...  

Two-dimensional (2D) heterostructures combine the advantageous features of different 2D materials and represent advanced electrode architectures for development of efficient energy storage devices. However, the common 2D heterostructures made by...


Author(s):  
Clemens Buchen ◽  
Alberto Palermo

AbstractWe relax the common assumption of homogeneous beliefs in principal-agent relationships with adverse selection. Principals are competitors in the product market and write contracts also on the base of an expected aggregate. The model is a version of a cobweb model. In an evolutionary learning set-up, which is imitative, principals can have different beliefs about the distribution of agents’ types in the population. The resulting nonlinear dynamic system is studied. Convergence to a uniform belief depends on the relative size of the bias in beliefs.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3728
Author(s):  
Taran Driver ◽  
Nikhil Bachhawat ◽  
Leszek J. Frasinski ◽  
Jonathan P. Marangos ◽  
Vitali Averbukh ◽  
...  

The rate of successful identification of peptide sequences by tandem mass spectrometry (MS/MS) is adversely affected by the common occurrence of co-isolation and co-fragmentation of two or more isobaric or isomeric parent ions. This results in so-called `chimera spectra’, which feature peaks of the fragment ions from more than a single precursor ion. The totality of the fragment ion peaks in chimera spectra cannot be assigned to a single peptide sequence, which contradicts a fundamental assumption of the standard automated MS/MS spectra analysis tools, such as protein database search engines. This calls for a diagnostic method able to identify chimera spectra to single out the cases where this assumption is not valid. Here, we demonstrate that, within the recently developed two-dimensional partial covariance mass spectrometry (2D-PC-MS), it is possible to reliably identify chimera spectra directly from the two-dimensional fragment ion spectrum, irrespective of whether the co-isolated peptide ions are isobaric up to a finite mass accuracy or isomeric. We introduce ‘3-57 chimera tag’ technique for chimera spectrum diagnostics based on 2D-PC-MS and perform numerical simulations to examine its efficiency. We experimentally demonstrate the detection of a mixture of two isomeric parent ions, even under conditions when one isomeric peptide is at one five-hundredth of the molar concentration of the second isomer.


Sign in / Sign up

Export Citation Format

Share Document