Opposing mixed convection flow in a wall jet over a horizontal plate

1997 ◽  
Vol 342 ◽  
pp. 355-375 ◽  
Author(s):  
F. J. HIGUERA

The coupling of the temperature and velocity fields by buoyancy in a laminar two-dimensional wall jet over a finite-length horizontal plate is studied numerically and analytically in the asymptotic limit of infinite Reynolds number. Two configurations are considered leading to a cold layer of fluid over the plate, namely an ambient-temperature jet over a cooled plate and a cold jet over an insulated plate. In both cases buoyancy generates an adverse pressure gradient that may separate the flow if the Froude number is sufficiently small and always makes the solution everywhere over the plate dependent on the conditions at the downstream boundary. In the limit of very small Froude number separation occurs in a viscous–inviscid interaction region near the origin of the jet, leading to a separation bubble that covers a fraction of the plate dependent on the Prandtl number. The scalings of the solution in this asymptotic limit are obtained by order of magnitude estimations in the different regions of the bubble and in the buoyancy-dominated flow beyond the bubble, and the results are checked against the numerical solutions of the boundary layer equations. A separate analysis is carried out for very large Prandtl numbers showing that the recirculation bubble is then much shorter than the plate, also in agreement with the numerical results.

2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
W. A. Khan ◽  
Md. Jashim Uddin ◽  
A. I. Md. Ismail

The mixed convection of Newtonian fluid flow along a moving horizontal plate with higher-order chemical reaction, variable concentration reactant, and variable wall temperature and concentration is considered. Velocity slip and the thermal convective boundary conditions are applied at the plate surface. The governing partial differential equations are transformed into similarity equations via dimensionless similarity transformations developed by one-parameter continuous group method. The numerical solutions of the transformed ordinary differential equations are constructed for velocity, temperature and concentration functions, the skin friction factor, the rate of heat, and the rate of mass transfer using an implicit finite difference numerical technique. The investigated parameters are buoyancy parameters , , chemical reaction parameter , suction/injection parameter , velocity slip parameter convective heat transfer parameter , magnetic parameter , Prandtl number Pr and Schmidt number, Sc. Comparison with results from the open literature shows a very good agreement.


2018 ◽  
Vol 115 (6) ◽  
pp. 1210-1214 ◽  
Author(s):  
Humberto Bocanegra Evans ◽  
Ali M. Hamed ◽  
Serdar Gorumlu ◽  
Ali Doosttalab ◽  
Burak Aksak ◽  
...  

Flow separation and vortex shedding are some of the most common phenomena experienced by bluff bodies under relative motion with the surrounding medium. They often result in a recirculation bubble in regions with adverse pressure gradient, which typically reduces efficiency in vehicles and increases loading on structures. Here, the ability of an engineered coating to manipulate the large-scale recirculation region was tested in a separated flow at moderate momentum thickness Reynolds number, Reθ=1,200. We show that the coating, composed of uniformly distributed cylindrical pillars with diverging tips, successfully reduces the size of, and shifts downstream, the separation bubble. Despite the so-called roughness parameter, k+≈1, falling within the hydrodynamic smooth regime, the coating is able to modulate the large-scale recirculating motion. Remarkably, this modulation does not induce noticeable changes in the near-wall turbulence levels. Supported with experimental data and theoretical arguments based on the averaged equations of motion, we suggest that the inherent mechanism responsible for the bubble modulation is essentially unsteady suction and blowing controlled by the increasing cross-section of the tips. The coating can be easily fabricated and installed and works under dry and wet conditions, increasing its potential impact on a diverse range of applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.


Author(s):  
H. Perez-Blanco ◽  
Robert Van Dyken ◽  
Aaron Byerley ◽  
Tom McLaughlin

Separation bubbles in high-camber blades under part-load conditions have been addressed via continuous and pulsed jets, and also via plasma actuators. Numerous passive techniques have been employed as well. In this type of blades, the laminar boundary layer cannot overcome the adverse pressure gradient arising along the suction side, resulting on a separation bubble. When separation is abated, a common explanation is that kinetic energy added to the laminar boundary layer speeds up its transition to turbulent. In the present study, a plasma actuator installed in the trailing edge (i.e. “wake filling configuration”) of a cascade blade is used to excite the flow in pulsed and continuous ways. The pulsed excitation can be directed to the frequencies of the large coherent structures (LCS) of the flow, as obtained via a hot-film anemometer, or to much higher frequencies present in the suction-side boundary layer, as given in the literature. It is found that pulsed frequencies much higher than that of LCS reduce losses and improve turning angles further than frequencies close to those of LCS. With the plasma actuator 50% on time, good loss abatement is obtained. Larger “on time” values yield improvements, but with decreasing returns. Continuous high-frequency activation results in the largest loss reduction, at increased power cost. The effectiveness of high frequencies may be due to separation abatement via boundary layer excitation into transition, or may simply be due to the creation of a favorable pressure gradient that averts separation as the actuator ejects fluid downstream. Both possibilities are discussed in light of the experimental evidence.


1972 ◽  
Vol 39 (4) ◽  
pp. 879-882
Author(s):  
G. K. Fleming ◽  
S. A. Alpay

A similarity solution has been obtained for a fluid jet bounded on one side by a separation bubble and on the other by an unbounded region containing the same fluid. The inner boundary has been approximated by a porous pseudowall. The resulting mathematical model reduces to other cases such as the plane wall jet and the free curved jet. A two-parameter family of solutions to the resulting nonlinear equation for the outer half of the jet correlates well with experimental data.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
J. P. Gostelow ◽  
R. L. Thomas ◽  
D. S. Adebayo

Further evidence on the similarities between transition and separation phenomena occurring in turbomachinery and wind tunnel flows is provided by measurements on a large scale flat plate under a strong adverse pressure gradient. The flat plate has a long laminar separation bubble and is subjected to a range of disturbances with triggering caused by injection of a transverse jet and subsequently by wakes generated by rods moving transversely upstream of the leading edge. Wakes were originally presented individually. Each individual wake provoked a vigorous turbulent patch, resulting in the instantaneous collapse of the separation bubble. This was followed by a very strong, and stable, calmed region. Following the lead given by the experiments of Gutmark and Blackwelder (1987, “On the Structure of Turbulent Spot in a Heated Laminar Boundary Layer,” Exp. Fluids, 5, pp. 207–229.) on triggered turbulent spots, wakes were then presented in pairs at different wake spacing intervals. In this way wake interaction effects could be investigated in more detail. As in the work on triggered turbulent spots the spacing between impinging wakes was systematically varied; it was found that for close wake spacings the calmed region acted to suppress the turbulence in the following turbulent patch. To investigate whether this phenomenon was a recurring one or whether the flow then reverted back to its unperturbed state, the experiments were repeated with three and four rods instead of two. This has the potential for making available a wide range of variables including direction and speed of rod rotation. It was found that the subsequent wakes were also suppressed by the calming effect. It may be anticipated that this repeating situation is present in a turbomachine, resulting in hidden benefits for blade count and efficiency. There may also conceivably be blade loading advantages while retaining favorable heat transfer conditions in high pressure turbines or stall margin in axial compressors. The inherent and prospective benefits of the calming effect therefore need to be understood thoroughly and new opportunities exploited where this is feasible.a


Author(s):  
R. B. Rivir ◽  
J. P. Johnston ◽  
J. K. Eaton

Fluid dynamics and heat transfer measurements were performed for a separation bubble formed on a smooth, flat, constant-heat-flux plate. The separation was induced by an adverse pressure gradient created by deflection of the opposite wall of the wind tunnel. The heat transfer rate was found to decline monotonically approaching the separation point and reach a broad minimum approximately 60% below zero-pressure-gradient levels. The heat transfer rate increased rapidly approaching reattachment with a peak occuring slightly downstream of the mean reattachment point. The opposite wall shape was varied to reduce the applied adverse pressure gradient. The heat transfer results were similar as long as the pressure gradient was sufficient to cause full separation of the boundary layer.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Sadia Siddiqa ◽  
Naheed Begum ◽  
M. A. Hossain ◽  
Rama Subba Reddy Gorla

This paper reports the numerical results for the natural convection flow of a two-phase dusty nanofluid along a vertical wavy frustum of a cone. The general governing equations are transformed into parabolic partial differential equations, which are then solved numerically with the help of implicit finite difference method. Comprehensive flow formations of carrier and dusty phases are given with the aim to predict the behavior of heat and mass transport across the heated wavy frustum of a cone. The effectiveness of utilizing the nanofluids to control skin friction and heat and mass transport is analyzed. The results clearly show that the shape of the waviness changes when nanofluid is considered. It is shown that the modified diffusivity ratio parameter, NA, extensively promotes rate of mass transfer near the vicinity of the cone, whereas heat transfer rate reduces.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Syed Muhammad Imran ◽  
Saleem Asghar ◽  
Muhammad Mushtaq

This paper deals with the analysis of an unsteady mixed convection flow of a fluid saturated porous medium adjacent to heated/cooled semi-infinite stretching vertical sheet in the presence of heat source. The unsteadiness in the flow is caused by continuous stretching of the sheet and continuous increase in the surface temperature. We present the analytical and numerical solutions of the problem. The effects of emerging parameters on field quantities are examined and discussed.


Sign in / Sign up

Export Citation Format

Share Document