scholarly journals Engineered bio-inspired coating for passive flow control

2018 ◽  
Vol 115 (6) ◽  
pp. 1210-1214 ◽  
Author(s):  
Humberto Bocanegra Evans ◽  
Ali M. Hamed ◽  
Serdar Gorumlu ◽  
Ali Doosttalab ◽  
Burak Aksak ◽  
...  

Flow separation and vortex shedding are some of the most common phenomena experienced by bluff bodies under relative motion with the surrounding medium. They often result in a recirculation bubble in regions with adverse pressure gradient, which typically reduces efficiency in vehicles and increases loading on structures. Here, the ability of an engineered coating to manipulate the large-scale recirculation region was tested in a separated flow at moderate momentum thickness Reynolds number, Reθ=1,200. We show that the coating, composed of uniformly distributed cylindrical pillars with diverging tips, successfully reduces the size of, and shifts downstream, the separation bubble. Despite the so-called roughness parameter, k+≈1, falling within the hydrodynamic smooth regime, the coating is able to modulate the large-scale recirculating motion. Remarkably, this modulation does not induce noticeable changes in the near-wall turbulence levels. Supported with experimental data and theoretical arguments based on the averaged equations of motion, we suggest that the inherent mechanism responsible for the bubble modulation is essentially unsteady suction and blowing controlled by the increasing cross-section of the tips. The coating can be easily fabricated and installed and works under dry and wet conditions, increasing its potential impact on a diverse range of applications.

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
J. P. Gostelow ◽  
R. L. Thomas ◽  
D. S. Adebayo

Further evidence on the similarities between transition and separation phenomena occurring in turbomachinery and wind tunnel flows is provided by measurements on a large scale flat plate under a strong adverse pressure gradient. The flat plate has a long laminar separation bubble and is subjected to a range of disturbances with triggering caused by injection of a transverse jet and subsequently by wakes generated by rods moving transversely upstream of the leading edge. Wakes were originally presented individually. Each individual wake provoked a vigorous turbulent patch, resulting in the instantaneous collapse of the separation bubble. This was followed by a very strong, and stable, calmed region. Following the lead given by the experiments of Gutmark and Blackwelder (1987, “On the Structure of Turbulent Spot in a Heated Laminar Boundary Layer,” Exp. Fluids, 5, pp. 207–229.) on triggered turbulent spots, wakes were then presented in pairs at different wake spacing intervals. In this way wake interaction effects could be investigated in more detail. As in the work on triggered turbulent spots the spacing between impinging wakes was systematically varied; it was found that for close wake spacings the calmed region acted to suppress the turbulence in the following turbulent patch. To investigate whether this phenomenon was a recurring one or whether the flow then reverted back to its unperturbed state, the experiments were repeated with three and four rods instead of two. This has the potential for making available a wide range of variables including direction and speed of rod rotation. It was found that the subsequent wakes were also suppressed by the calming effect. It may be anticipated that this repeating situation is present in a turbomachine, resulting in hidden benefits for blade count and efficiency. There may also conceivably be blade loading advantages while retaining favorable heat transfer conditions in high pressure turbines or stall margin in axial compressors. The inherent and prospective benefits of the calming effect therefore need to be understood thoroughly and new opportunities exploited where this is feasible.a


1997 ◽  
Vol 342 ◽  
pp. 355-375 ◽  
Author(s):  
F. J. HIGUERA

The coupling of the temperature and velocity fields by buoyancy in a laminar two-dimensional wall jet over a finite-length horizontal plate is studied numerically and analytically in the asymptotic limit of infinite Reynolds number. Two configurations are considered leading to a cold layer of fluid over the plate, namely an ambient-temperature jet over a cooled plate and a cold jet over an insulated plate. In both cases buoyancy generates an adverse pressure gradient that may separate the flow if the Froude number is sufficiently small and always makes the solution everywhere over the plate dependent on the conditions at the downstream boundary. In the limit of very small Froude number separation occurs in a viscous–inviscid interaction region near the origin of the jet, leading to a separation bubble that covers a fraction of the plate dependent on the Prandtl number. The scalings of the solution in this asymptotic limit are obtained by order of magnitude estimations in the different regions of the bubble and in the buoyancy-dominated flow beyond the bubble, and the results are checked against the numerical solutions of the boundary layer equations. A separate analysis is carried out for very large Prandtl numbers showing that the recirculation bubble is then much shorter than the plate, also in agreement with the numerical results.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4170 ◽  
Author(s):  
Jincheng Zhang ◽  
Zhenguo Wang ◽  
Mingbo Sun ◽  
Hongbo Wang ◽  
Chaoyang Liu ◽  
...  

A transverse jet in the supersonic crossflow is one of the most promising injection schemes in scramjet, where the control or enhancement of jet mixing is a critical issue. In this paper, the effect of the backward facing step on the characteristics of jet mixing was investigated by three-dimensional large eddy simulation (LES). The simulation in the flat plate configuration (step height of 0) was performed as the baseline case to verify the computation framework. The distribution of the velocity and pressure obtained by the LES agreed well with the experiment, which shows the reliability of the LES code. Then, two steps with a height of 1.0D and 1.58D (D is the injector diameter) were numerically compared to the non-step baseline case. The comparison of the three cases illustrates the effect of the large-scale recirculation region on the variable distribution, and shock and vortex structures in the flow field. In the windward region, the shear layers become thicker, and the convection velocity of the shear vortexes reduces. In the leeward region, the wake vortices almost disappear while the counterrotating vortex pairs (CVPs) expand in the spanwise direction. In the area upstream of the jet, the separation bubble works with the upstream large-scale recirculation zone to entrain the jet into the upstream near-wall zone. At last, a comparison of the overall mixing performance of the three cases revealed that the penetration depth and mixing efficiency increased with the step height increasing.


2017 ◽  
Vol 823 ◽  
pp. 100-133 ◽  
Author(s):  
J.-P. Mollicone ◽  
F. Battista ◽  
P. Gualtieri ◽  
C. M. Casciola

Turbulent flow separation induced by a protuberance on one of the walls of an otherwise planar channel is investigated using direct numerical simulations. Different bulge geometries and Reynolds numbers – with the highest friction Reynolds number simulation reaching a peak of $Re_{\unicode[STIX]{x1D70F}}=900$ – are addressed to understand the effect of the wall curvature and of the Reynolds number on the dynamics of the recirculating bubble behind the bump. Global quantities reveal that most of the drag is due to the form contribution, whilst the friction contribution does not change appreciably with respect to an equivalent planar channel flow. The size and position of the separation bubble strongly depends on the bump shape and the Reynolds number. The most bluff geometry has a larger recirculation region, whilst the Reynolds number increase results in a smaller recirculation bubble and a shear layer more attached to the bump. The position of the reattachment point only depends on the Reynolds number, in agreement with experimental data available in the literature. Both the mean and the turbulent kinetic energy equations are addressed in such non-homogeneous conditions revealing a non-trivial behaviour of the energy fluxes. The energy introduced by the pressure drop follows two routes: part of it is transferred towards the walls to be dissipated and part feeds the turbulent production hence the velocity fluctuations in the separating shear layer. Spatial energy fluxes transfer the kinetic energy into the recirculation bubble and downstream near the wall where it is ultimately dissipated. Consistently, anisotropy concentrates at small scales near the walls irrespective of the value of the Reynolds number. In the bulk flow and in the recirculation bubble, isotropy is restored at small scales and the isotropy recovery rate is controlled by the Reynolds number. Anisotropy invariant maps are presented, showing the difficulty in developing suitable turbulence models to predict separated turbulent flow dynamics. Results shed light on the processes of production, transfer and dissipation of energy in this relatively complex turbulent flow where non-homogeneous effects overwhelm the classical picture of wall-bounded turbulent flows which typically exploits streamwise homogeneity.


Author(s):  
J. P. Gostelow ◽  
R. L. Thomas ◽  
D. S. Adebayo

Further evidence on the similarities between transition and separation phenomena occurring in turbomachinery and wind tunnel flows is provided by measurements on a large scale flat plate under a strong adverse pressure gradient. The flat plate has a long laminar separation bubble and is subjected to a range of disturbances with triggering caused by injection of a transverse jet and subsequently by wakes generated by rods moving transversely upstream of the leading edge. Wakes were originally presented individually. Each individual wake provoked a vigorous turbulent patch, resulting in the instantaneous collapse of the separation bubble. This was followed by a very strong, and stable, calmed region. Following the lead given by the experiments of Gutmark and Blackwelder on triggered turbulent spots, wakes were then presented in pairs at different wake spacing intervals. In this way wake interaction effects could be investigated in more detail. As in the work on triggered turbulent spots the spacing between impinging wakes was systematically varied; it was found that for close wake spacings the calmed region acted to suppress the turbulence in the following turbulent patch. To investigate whether this phenomenon was a recurring one, or whether the flow then reverted back to its unperturbed state, the experiments were repeated with three and four rods instead of two. This has the potential for making available a wide range of variables including direction and speed of rod rotation. It was found that the subsequent wakes were also suppressed by the calming effect. It may be anticipated that this repeating situation is present in a turbomachine, resulting in hidden benefits for blade count and efficiency. There may also conceivably be blade loading advantages whilst retaining favorable heat transfer conditions in high pressure turbines or stall margin in axial compressors. The inherent and prospective benefits of the calming effect therefore need to be understood thoroughly and new opportunities exploited where this is feasible.


Author(s):  
Sho Yokota ◽  
Taku Ochiai ◽  
Takumi Ambo ◽  
Yuta Ozawa ◽  
Taku Nonomura ◽  
...  

Abstract In this study, the wake structure around freestream-aligned cylinder is investigated and its aerodynamic characteristics are discussed. A magnetic suspension and balance system (MSBS) was used to support a model without interference from a mechanical support device. Seven models with the fineness ratio (length to diameter, L/D) of 0.5, 1.0, 1.25, 1.5, 1.75, 2.0, and 2.25 were used. Reynolds number based on the cylinder diameter were 3.2 × 104 and 6.3 × 104. The velocity field was obtained by particle image velocimetry (PIV) in the center plane of the cylinder. In the case of fineness ratio over 1.5, the reattachment of shear layer was observed from the mean velocity field. The characteristic fluctuation of velocity was confirmed in power spectral density of streamwise component and vertical component. The length of the recirculation region is different depending on fineness ratio. The characteristic frequencies of the velocity fluctuation which seems to be due to recirculation bubble pumping and large-scale structure are observed from power spectrum density.


2005 ◽  
Vol 33 (1) ◽  
pp. 38-62 ◽  
Author(s):  
S. Oida ◽  
E. Seta ◽  
H. Heguri ◽  
K. Kato

Abstract Vehicles, such as an agricultural tractor, construction vehicle, mobile machinery, and 4-wheel drive vehicle, are often operated on unpaved ground. In many cases, the ground is deformable; therefore, the deformation should be taken into consideration in order to assess the off-the-road performance of a tire. Recent progress in computational mechanics enabled us to simulate the large scale coupling problem, in which the deformation of tire structure and of surrounding medium can be interactively considered. Using this technology, hydroplaning phenomena and tire traction on snow have been predicted. In this paper, the simulation methodology of tire/soil coupling problems is developed for pneumatic tires of arbitrary tread patterns. The Finite Element Method (FEM) and the Finite Volume Method (FVM) are used for structural and for soil-flow analysis, respectively. The soil is modeled as an elastoplastic material with a specified yield criterion and a nonlinear elasticity. The material constants are referred to measurement data, so that the cone penetration resistance and the shear resistance are represented. Finally, the traction force of the tire in a cultivated field is predicted, and a good correlation with experiments is obtained.


Author(s):  
Andrew Reid ◽  
Julie Ballantyne

In an ideal world, assessment should be synonymous with effective learning and reflect the intricacies of the subject area. It should also be aligned with the ideals of education: to provide equitable opportunities for all students to achieve and to allow both appropriate differentiation for varied contexts and students and comparability across various contexts and students. This challenge is made more difficult in circumstances in which the contexts are highly heterogeneous, for example in the state of Queensland, Australia. Assessment in music challenges schooling systems in unique ways because teaching and learning in music are often naturally differentiated and diverse, yet assessment often calls for standardization. While each student and teacher has individual, evolving musical pathways in life, the syllabus and the system require consistency and uniformity. The challenge, then, is to provide diverse, equitable, and quality opportunities for all children to learn and achieve to the best of their abilities. This chapter discusses the designing and implementation of large-scale curriculum as experienced in secondary schools in Queensland, Australia. The experiences detailed explore the possibilities offered through externally moderated school-based assessment. Also discussed is the centrality of system-level clarity of purpose, principles and processes, and the provision of supportive networks and mechanisms to foster autonomy for a diverse range of music educators and contexts. Implications for education systems that desire diversity, equity, and quality are discussed, and the conclusion provokes further conceptualization and action on behalf of students, teachers, and the subject area of music.


2021 ◽  
Vol 502 (3) ◽  
pp. 3976-3992
Author(s):  
Mónica Hernández-Sánchez ◽  
Francisco-Shu Kitaura ◽  
Metin Ata ◽  
Claudio Dalla Vecchia

ABSTRACT We investigate higher order symplectic integration strategies within Bayesian cosmic density field reconstruction methods. In particular, we study the fourth-order discretization of Hamiltonian equations of motion (EoM). This is achieved by recursively applying the basic second-order leap-frog scheme (considering the single evaluation of the EoM) in a combination of even numbers of forward time integration steps with a single intermediate backward step. This largely reduces the number of evaluations and random gradient computations, as required in the usual second-order case for high-dimensional cases. We restrict this study to the lognormal-Poisson model, applied to a full volume halo catalogue in real space on a cubical mesh of 1250 h−1 Mpc side and 2563 cells. Hence, we neglect selection effects, redshift space distortions, and displacements. We note that those observational and cosmic evolution effects can be accounted for in subsequent Gibbs-sampling steps within the COSMIC BIRTH algorithm. We find that going from the usual second to fourth order in the leap-frog scheme shortens the burn-in phase by a factor of at least ∼30. This implies that 75–90 independent samples are obtained while the fastest second-order method converges. After convergence, the correlation lengths indicate an improvement factor of about 3.0 fewer gradient computations for meshes of 2563 cells. In the considered cosmological scenario, the traditional leap-frog scheme turns out to outperform higher order integration schemes only when considering lower dimensional problems, e.g. meshes with 643 cells. This gain in computational efficiency can help to go towards a full Bayesian analysis of the cosmological large-scale structure for upcoming galaxy surveys.


Science ◽  
2021 ◽  
Vol 372 (6541) ◽  
pp. 512-516
Author(s):  
Yan Zhou ◽  
Xuexia Xu ◽  
Yifeng Wei ◽  
Yu Cheng ◽  
Yu Guo ◽  
...  

DNA modifications vary in form and function but generally do not alter Watson-Crick base pairing. Diaminopurine (Z) is an exception because it completely replaces adenine and forms three hydrogen bonds with thymine in cyanophage S-2L genomic DNA. However, the biosynthesis, prevalence, and importance of Z genomes remain unexplored. Here, we report a multienzyme system that supports Z-genome synthesis. We identified dozens of globally widespread phages harboring such enzymes, and we further verified the Z genome in one of these phages, Acinetobacter phage SH-Ab 15497, by using liquid chromatography with ultraviolet and mass spectrometry. The Z genome endows phages with evolutionary advantages for evading the attack of host restriction enzymes, and the characterization of its biosynthetic pathway enables Z-DNA production on a large scale for a diverse range of applications.


Sign in / Sign up

Export Citation Format

Share Document