Evolutionary adaptation and geographic spread of the Cenozoic buccinid genus Lirabuccinum in the North Pacific

2003 ◽  
Vol 77 (5) ◽  
pp. 863-872 ◽  
Author(s):  
Kazutaka Amano ◽  
Geerat J. Vermeij

The Early Oligocene to Recent genus Lirabuccinum Vermeij, 1991, is a North Pacific clade of rocky-bottom predatory buccinid gastropods. A re-examination of all available material from eastern Asia and comparison of this material with western American species leads us to recognize four northwestern Pacific species: L. fuscolabiatum (Smith, 1875) from the Pliocene to Recent; L. japonicum (Yokoyama, 1926) from the Pliocene and Early Pleistocene; L. branneri (Clark and Arnold, 1923) from the early Middle Miocene, also known from the Oligocene in the eastern Pacific; and Lirabuccinum sp. from the late Middle Miocene. The genus originated in the eastern Pacific and subsequently spread to the western Pacific by late Early Miocene to early Middle Miocene time. Lirabuccinum exemplifies a common pattern among rocky-bottom North Pacific gastropods in that the early species have a thick, internally strongly ribbed or denticulate outer lip. As they adapted to the colder boreal realm during the Pliocene and Pleistocene, Lirabuccinum and such other clades as Nucella, Ceratostoma, and Ocinebrellus (all Muricidae) evolved thinner, less heavily reinforced outer lips.

Paleobiology ◽  
1989 ◽  
Vol 15 (4) ◽  
pp. 335-356 ◽  
Author(s):  
Geerat J. Vermeij

Geographical restriction to refuges implies the regional extinction of taxa in areas of the previous range falling outside the refuge. A comparison of the circumstances in the refuge with those in areas from which the taxa were eliminated is potentially informative for pinpointing the causes of extinction. A synthesis of data on the geographical and stratigraphical distributions of cool-water molluscs of the North Pacific and North Atlantic Oceans during the late Neogene reveals four patterns of geographical restriction, at least two of which imply that climatic cooling was not the only cause of extinction during the last several million years. These four patterns are (1) the northwestern Pacific restriction, involving 15 taxa whose amphi-Pacific distributions during the late Neogene became subsequently restricted to the Asian side of the Pacific; (2) the northwestern Atlantic restriction, involving six taxa whose early Pleistocene distribution is inferred to have been amphi-Atlantic, but whose present-day and late Pleistocene ranges are confined to the northwestern Atlantic; (3) a vicariant Pacific pattern, in which many ancestral amphi-Pacific taxa gave rise to separate eastern and western descendants; and (4) the circumboreal restriction, involving six taxa whose early Pleistocene distribution, encompassing both the Atlantic and Pacific Oceans, became subsequently limited to the North Pacific. Like the Pliocene extinctions in the Atlantic, previously studied by Stanley and others, the vicariant Pacific pattern is most reasonably interpreted as having resulted from regional extinction of northern populations in response to cooling. The northwestern Pacific and Atlantic restrictions, however, cannot be accounted for in this way. In contrast to the northeastern margins of the Pacific and Atlantic, the northwestern margins are today characterized by wide temperature fluctuations and by extensive development of shore ice in winter. Northeastern, rather than northwestern, restriction would be expected if cooling were the overriding cause of regional extinction. Among the other possible causes of extinction, only a decrease in primary productivity can account for the observed northwestern and circumboreal patterns of restriction. Geographical patterns of body size and the distribution of siliceous deposits provide supporting evidence that primary productivity declined after the Miocene in the northeastern Pacific, but remained high in the northwestern Pacific, and that productivity in the Pacific is generally higher than it is in the Atlantic. The patterns of geographical restriction in the northern oceans thus provide additional support to previous inferences that reductions in primary productivity have played a significant role in marine extinctions.


2008 ◽  
Vol 21 (11) ◽  
pp. 2664-2679 ◽  
Author(s):  
Xianan Jiang ◽  
Ngar-Cheung Lau

Abstract Based on a recently released, high-resolution reanalysis dataset for the North American region, the intraseasonal variability (ISV; with a time scale of about 20 days) of the North American monsoon (NAM) is examined. The rainfall signals associated with this phenomenon first emerge near the Gulf of Mexico and eastern Pacific at about 20°N. They subsequently migrate to the southwestern United States along the slope of the Sierra Madre Occidental. The rainfall quickly dissipates upon arrival at the desert region of Arizona and New Mexico (AZNM). The enhanced rainfall over AZNM is accompanied by strong southeasterly low-level flow along the Gulf of California. This pattern bears strong resemblance to the circulation related to “gulf surge” events, as documented by many studies. The southeasterly flow is associated with an anomalous low vortex over the subtropical eastern Pacific Ocean off California, and a midlatitude anticyclone over the central United States in the lower troposphere. This flow pattern is in broad agreement with that favoring the “wet surges” over the southwestern United States. It is further demonstrated that the aforementioned low-level circulations associated with ISV of the NAM are part of a prominent trans-Pacific wave train extending from the western North Pacific (WNP) to the Eastern Pacific/North America along a “great circle” path. The circulation anomalies along the axis of this wave train exhibit a barotropic vertical structure over most regions outside of the WNP, and a baroclinic structure over the WNP, thus suggesting the important role of convective activities over the WNP in sustaining this wave train. This inference is further substantiated by an analysis of the pattern of wave-activity–flux vectors. Variations in the WNP convection are correlated with the ISV of the monsoons in both North American and East Asian (EA)/WNP sectors. These relationships lead to notable teleconnections between NAM and the EA/WNP monsoon on 20-day time scales.


2018 ◽  
Vol 11 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Matthew J. Widlansky ◽  
H. Annamalai ◽  
Stephen B. Gingerich ◽  
Curt D. Storlazzi ◽  
John J. Marra ◽  
...  

Abstract Potential changing climate threats in the tropical and subtropical North Pacific Ocean were assessed, using coupled ocean–atmosphere and atmosphere-only general circulation models, to explore their response to projected increasing greenhouse gas emissions. Tropical cyclone occurrence, described by frequency and intensity, near islands housing major U.S. defense installations was the primary focus. Four island regions—Guam and Kwajalein Atoll in the tropical northwestern Pacific, Okinawa in the subtropical northwestern Pacific, and Oahu in the tropical north-central Pacific—were considered, as they provide unique climate and geographical characteristics that either enhance or reduce the tropical cyclone risk. Guam experiences the most frequent and severe tropical cyclones, which often originate as weak systems close to the equator near Kwajalein and sometimes track far enough north to affect Okinawa, whereas intense storms are the least frequent around Oahu. From assessments of models that simulate well the tropical Pacific climate, it was determined that, with a projected warming climate, the number of tropical cyclones is likely to decrease for Guam and Kwajalein but remain about the same near Okinawa and Oahu; however, the maximum intensity of the strongest storms may increase in most regions. The likelihood of fewer but stronger storms will necessitate new localized assessments of the risk and vulnerabilities to tropical cyclones in the North Pacific.


1997 ◽  
Vol 45 (3) ◽  
pp. 359 ◽  
Author(s):  
L. A. Frakes

Grossplots are compilations of globally distributed palaeotemperature data onto latitude versus age plots, which are then contoured. The results specifically show the distribution of temperature over the globe and its variations over the Cretaceous to Middle Miocene interval. Data for continents and oceans are plotted separately in this investigation, and each such grossplot is in accord with the known climate changes of this time. The general scarcity of quantitative palaeotemperature information for Australia can be rectified by deriving, from the global continental grossplot, the relationship between mean annual temperature and latitude. When these are applied to the latitude band progressively occupied by Australia, the following observations can be made: (1) during the Early Cretaceous, the south-east of the continent was subjected to freezing wintertime temperatures; (2) peak warming of northern Australia was attained in the Turonian–Santonian, but this was followed by cooling later in the Cretaceous; (3) Early Tertiary warming until the Late Eocene particularly affected the northern half of the continent, but this region then underwent the most severe cooling in the Early Oligocene; (4) subsequently, the whole of the continent cooled uniformly from conditions only slightly warmer than at present. Despite Australia’s equatorward march, the Late Cretaceous to Palaeocene climates of the continent have been influenced more effectively by changes in the global climate state. However, global cooling since the Eocene has been less effective than drift in controlling the warming climate of Australia. The time–space distribution of precipitation over Australia is estimated from the global relationship between terrestrial temperature and rainfall. The Eocene experienced the heaviest rainfall (> 1560 mm year-1, in the north only), and the Eocene to Middle Miocene experienced moderately high rates (> 500 mm year-1 in the northern three-quarters of the continent). Tertiary brown coals in southern regions were formed in proximity to areas of high rainfall. Continentwide low rates (< 500 mm year-1; semi-arid) are suggested for the Cretaceous, except for wet conditions in the north during the Albian–Santonian and the Late Maastrichtian. Estimates of precipitation are subject to factors such as continentality and location of moisture sources, which cannot be evaluated at present.


2020 ◽  
Author(s):  
Baolan wu ◽  
Xiaopei lin ◽  
Lisan yu

&lt;p&gt;&lt;strong&gt;The North Pacific Subtropical Mode Water (mode water hereafter) is a vertically homogeneous thermocline water mass, occupying the entire subtropical Western Pacific Ocean. By transporting mass, heat and nutrients from the surface into the subsurface ocean, it provides memory of climate variability and is a potential source of predictability. Previous studies attributed decadal variability of the mode water mean temperature to the Pacific Decadal Oscillation (PDO). Using available observations and reanalysis data, here we show that decadal to multi-decadal variability of the mode water mean temperature is controlled by the Atlantic Multi-Decadal Variability (AMV) instead. During an AMV positive phase, warm sea surface temperatures (SSTs) in the north Atlantic Ocean weaken the subtropical North&lt;/strong&gt; &lt;strong&gt;Pacific westerlies, and the anomalous easterlies in the subtropical west Pacific drive an anomalous northward Ekman transport of warm water into the mode water formation area. &lt;/strong&gt;&lt;strong&gt;This increases the mode water temperature through subduction&lt;/strong&gt;&lt;strong&gt;, driving variability of the upper-layer ocean heat content and fish catches in the Northwestern Pacific. This mechanism is supported by a long pre-industrial model simulation with multiple AMV cycles and by a Pacemaker model experiment, in which the AMV forcing alone is shown to drive the variability of the mode water. Our finding suggests that the AMV is an important driver for decadal climate and ecosystem variability and provides memory for prediction in the Pacific Ocean.&lt;/strong&gt;&lt;/p&gt;


2015 ◽  
Vol 28 (12) ◽  
pp. 4950-4970 ◽  
Author(s):  
Xiaohui Ma ◽  
Ping Chang ◽  
R. Saravanan ◽  
Dexing Wu ◽  
Xiaopei Lin ◽  
...  

Abstract Boreal winter (November–March) extreme flux events in the Kuroshio Extension region (KER) of the northwestern Pacific and the Gulf Stream region (GSR) of the northwestern Atlantic are analyzed and compared, based on NCEP Climate Forecast System Reanalysis (CFSR), NCEP–NCAR reanalysis, and NOAA Twentieth Century Reanalysis data, as well as the observationally derived OAFlux dataset. These extreme flux events, most of which last less than 3 days, are characterized by cold air outbreaks (CAOs) with an anomalous northerly wind that brings cold and dry air from the Eurasian and North American continents to the KER and GSR, respectively. A close relationship between the extreme flux events over KER (GSR) and the Aleutian low pattern (ALP) [east Atlantic pattern (EAP)] is found with more frequent occurrence of the extreme flux events during a positive ALP (EAP) phase and vice versa. A further lag-composite analysis suggests that the ALP (EAP) is associated with accumulated effects of the synoptic winter storms accompanied by the extreme flux events and shows that the event-day storms tend to have a preferred southeastward propagation path over the North Pacific (Atlantic), potentially contributing to the southward shift of the storm track over the eastern North Pacific (Atlantic) basin during the ALP (EAP) positive phase. Finally, lag-regression analyses indicate a potential positive influence of sea surface temperature (SST) anomalies along the KER (GSR) on the development of the extreme flux events in the North Pacific (Atlantic).


2018 ◽  
Vol 37 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Kenji M. Matsuzaki ◽  
Noritoshi Suzuki

Abstract. Expedition 341 of the Integrated Ocean Drilling Program (IODP) retrieved sediment cores spanning the time interval between the Pleistocene and Miocene from the southern Gulf of Alaska. Onboard Pleistocene radiolarian biostratigraphy is hereby refined by increasing the sampling resolution. The 178 core samples from the upper 190 m CCSF-B (Composite Core Depth Scale F-B) of Site U1417 contained faunal elements similar to the northwestern Pacific; for example, the three biozones in the northwestern Pacific (i.e., Eucyrtidium matuyamai, Stylatractus universus and Botryostrobus aquilonaris) were also recognized in the Gulf of Alaska, spanning 1.80–1.13 Ma, 1.13–0.45 Ma, and the last 0.45 Myr, respectively. Based on the age model that we used in this study and the shipboard paleomagnetic reversal events, the first occurrences (FOs) of Amphimelissa setosa and Schizodiscus japonicus in the northeastern Pacific were preliminarily determined to be 1.48 and 1.30 Ma, respectively. The last occurrence (LO) of Eucyrtidium matuyamai and the FO of Lychnocanoma sakaii, both well-established bioevents in the northwestern Pacific, were dated at 0.80 and 1.13 Ma, respectively. The LO of E. matuyamai is a synchronous event at 1.05 ± 0.1 Ma in the North Pacific, while the FOs of A. setosa and S. japonicus at 1.48 and 1.30 Ma, respectively, are significantly older than what has been found elsewhere.


2016 ◽  
Vol 90 (1) ◽  
pp. 154-169 ◽  
Author(s):  
Stephen J. Godfrey ◽  
Mark D. Uhen ◽  
Jason E. Osborne ◽  
Lucy E. Edwards

AbstractThe holotype partial skull ofAgorophius pygmaeus(the monotypic form for both the genusAgorophiusand the Family Agorophiidae) has been missing for approximately 140 years. Since the discovery ofAgorophius pygmaeus, many additional taxa and specimens have been placed in the Family Agorophiidae, only to be reclassified and removed later. This has created confusion as to what is and what is not an agorophiid and a lack of clarity as to what characteristics delimit the Agorophiidae. A newly discovered skull of an agorophiid recently collected from an underwater cliff face of the Ashley River, South Carolina, USA, is assigned toAgorophius pygmaeus. It derives from the base of the Ashley Formation (early Oligocene). The new specimen consists of most of the skull and periotics, which are well preserved and described for the first time in an agorophiid. The new specimen provides an opportunity to diagnose the Agorophiidae and place the genus and species within the phylogenetic context of the early odontocete radiation in the Oligocene, along with other taxa such as the Ashleycetidae, Mirocetidae, Patriocetidae, Simocetidae, Waipatiidae, and Xenorophidae. Based on this new understanding, Agorophiidae are known with certainty only from the early Oligocene of South Carolina, with other undescribed, potential agorophiid specimens from the Oligocene of the North Pacific region (Japan, Mexico, and Washington State).


2013 ◽  
Vol 151 (2) ◽  
pp. 372-379 ◽  
Author(s):  
IRENE ALBINO ◽  
WILLIAM CAVAZZA ◽  
MASSIMILIANO ZATTIN ◽  
ARAL I. OKAY ◽  
SHOTA ADAMIA ◽  
...  

AbstractNew thermochronological data show that rapid Middle Miocene exhumation occurred synchronously along the Bitlis suture zone and in the southeastern Black Sea region, arguably as a far-field effect of the Arabia–Eurasia indentation. Collision-related strain focused preferentially along the rheological boundary between the multideformed continental lithosphere of northeastern Anatolia and the strong (quasi)oceanic lithosphere of the eastern Black Sea. Deformation in the southeastern Black Sea region ceased in late Middle Miocene time, when coherent westward motion of Anatolia and the corresponding activation of the North and East Anatolian Fault systems mechanically decoupled portions of the foreland from the Arabia–Eurasia collision zone.


2014 ◽  
Vol 44 (2) ◽  
pp. 558-575 ◽  
Author(s):  
Dongliang Yuan ◽  
Zhichun Zhang ◽  
Peter C. Chu ◽  
William K. Dewar

Abstract Absolute geostrophic currents in the North Pacific Ocean are calculated from the newly gridded Argo profiling float data using the P-vector method for the period of 2004–11. The zonal geostrophic currents based on the Argo profile data are found to be stronger than those based on the traditional World Ocean Atlas 2009 (WOA09) data. A westward mean geostrophic flow underneath the North Equatorial Countercurrent is identified using the Argo data, which is evidenced by sporadic direct current measurements and geostrophic calculations in history. This current originates east of the date line and transports more than 4 × 106 m3 s−1 of water westward in the subsurface northwestern tropical Pacific Ocean. The authors name this current the North Equatorial Subsurface Current. The transport in the geostrophic currents is compared with the Sverdrup theory and found to differ significantly in several locations. Analyses have shown that errors of wind stress estimation cannot account for all of the differences. The largest differences are found in the area immediately north and south of the bifurcation latitude of the North Equatorial Current west of the date line and in the recirculation area of the Kuroshio and its extension, where nonlinear activities are vigorous. It is, therefore, suggested that the linear dynamics of the Sverdrup theory is deficient in explaining the geostrophic transport of the tropical northwestern Pacific Ocean.


Sign in / Sign up

Export Citation Format

Share Document