scholarly journals Linear electrostatic gyrokinetics for electron–positron plasmas

2018 ◽  
Vol 84 (6) ◽  
Author(s):  
D. Kennedy ◽  
A. Mishchenko ◽  
P. Xanthopoulos ◽  
P. Helander

Gyrokinetic stability of plasmas in different magnetic geometries is studied numerically using the GENE code. We examine the stability of plasmas, varying the mass ratio between the positive and negative charge carriers, from conventional hydrogen plasmas through to electron–positron plasmas. Stability is studied for prescribed temperature and density gradients in different magnetic geometries: (i) An axisymmetric, circular flux surface, low$\unicode[STIX]{x1D6FD}$(tokamak) configuration. (ii) A non-axisymmetric quasi-isodynamic (optimised stellarator) configuration using the geometry of the stellarator Wendelstein 7-X. We also present the analytic theory of trapped particle modes in electron–positron plasmas. We found similar behaviour of the growth rate and real frequency compared to previous studies on the tokamak case. We are able to identify two distinct regimes dominated by modes propagating in the electron diamagnetic direction and modes propagating in the ion/positron diamagnetic direction, depending on the mass ratio. In both the tokamak and the stellarator case we observe that the real frequency tends to zero as the mass ratio approaches unity and are able to explain this using gyrokinetic theory.

1983 ◽  
Vol 29 (2) ◽  
pp. 275-286 ◽  
Author(s):  
K. R. Symon

Several conclusions regarding the stability of inhomogeneous Vlasov equilibria are drawn from earlier work. A technique is presented for generating first-order formulae for the change δω in the frequency of any normal mode, when a parameter λ characterizing the equilibrium is changed slightly. Several applications are given, including a first-order calculation of the growth rate or damping of an electromagnetic mode due to the presence of plasma. A condition is derived for the existence of a normal mode with real frequency. When there are ignorable co-ordinates, the normal modes can be written in the form of waves propagating in the ignorable directions. The character of the modes depends on certain symmetries in the dynamic spectral matrix. Special cases arise when the orbits can be approximated in certain ways.


1996 ◽  
Vol 308 ◽  
pp. 31-62 ◽  
Author(s):  
Chi-Hwa Wang ◽  
R. Jackson ◽  
S. Sundaresan

This paper presents a linear stability analysis of a rapidly sheared layer of granular material confined between two parallel solid plates. The form of the steady base-state solution depends on the nature of the interaction between the material and the bounding plates and three cases are considered, in which the boundaries act as sources or sinks of pseudo-thermal energy, or merely confine the material while leaving the velocity profile linear, as in unbounded shear. The stability analysis is conventional, though complicated, and the results are similar in all cases. For given physical properties of the particles and the bounding plates it is found that the condition of marginal stability depends only on the separation between the plates and the mean bulk density of the particulate material contained between them. The system is stable when the thickness of the layer is sufficiently small, but if the thickness is increased it becomes unstable, and initially the fastest growing mode is analogous to modes of the corresponding unbounded problem. However, with a further increase in thickness a new mode becomes dominant and this is of an unusual type, with no analogue in the case of unbounded shear. The growth rate of this mode passes through a maximum at a certain value of the thickness of the sheared layer, at which point it grows much faster than any mode that could be shared with the unbounded problem. The growth rate of the dominant mode also depends on the bulk density of the material, and is greatest when this is neither very large nor very small.


1961 ◽  
Vol 28 (1) ◽  
pp. 71-77 ◽  
Author(s):  
C. P. Atkinson

This paper presents a method for analyzing a pair of coupled nonlinear differential equations of the Duffing type in order to determine whether linearly related modal oscillations of the system are possible. The system has two masses, a coupling spring and two anchor springs. For the systems studied, the anchor springs are symmetric but the masses are not. The method requires the solution of a polynomial of fourth degree which reduces to a quadratic because of the symmetric springs. The roots are a function of the spring constants. When a particular set of spring constants is chosen, roots can be found which are then used to set the necessary mass ratio for linear modal oscillations. Limits on the ranges of spring-constant ratios for real roots and positive-mass ratios are given. A general stability analysis is presented with expressions for the stability in terms of the spring constants and masses. Two specific examples are given.


2011 ◽  
Vol 66 (3) ◽  
pp. 269-274
Author(s):  
Samir F. Matar

We address the changes in the electronic structure brought by the insertion of hydrogen into ThCo leading to the experimentally observed ThCoH4. Full geometry optimization positions the hydrogen in three sites stabilized in the expanded intermetallic matrix. From a Bader charge analysis, hydrogen is found to be in a narrow iono-covalent (~−0.6) to covalent (~−0.3) bonding which should enable site-selective desorption. The overall chemical picture shows a positively charged Thδ+ with the negative charge redistributed over a complex anion {CoH4}δ− with δ~1.8. Nevertheless this charge transfer remains far from the one in the more ionic hydridocobaltate anion CoH54− in Mg2CoH5, due to the largely electropositive character of Mg.


2021 ◽  
Author(s):  
Jiří Pavlů ◽  
Samuel Kočiščák ◽  
Åshild Fredriksen ◽  
Michael DeLuca ◽  
Zoltan Sternovsky

<p>We experimentally observe both positive and negative charge carriers in impact plasma and estimate their effective temperatures. The measurements are carried on a dust accelerator using polypyrrole (PPy)-coated olivine dust particles impacting tungsten (W) target in the velocity range of 2–18 km/s. We measure the retained impact charge as a function of applied bias potential to the control grid. The temperatures are estimated from the data fit. The estimated effective temperatures of the positive ions are approximately 7 eV and seems to be independent of the impact speed. The negative charge carriers' temperatures vary from as low as 1 eV for the lowest speeds to almost ten times higher speeds. The presented values differ significantly from previous studies using Fe dust particles. Yet, the discrepancy can be attributed to a larger fraction of negative ions in the impact plasma that likely originates from the PPy coating.</p>


2014 ◽  
Vol 755 ◽  
pp. 705-731 ◽  
Author(s):  
Sasan Sarmast ◽  
Reza Dadfar ◽  
Robert F. Mikkelsen ◽  
Philipp Schlatter ◽  
Stefan Ivanell ◽  
...  

AbstractTwo modal decomposition techniques are employed to analyse the stability of wind turbine wakes. A numerical study on a single wind turbine wake is carried out focusing on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier–Stokes equations using the actuator line (ACL) method to simulate the wake behind the Tjæreborg wind turbine. The wake is perturbed by low-amplitude excitation sources located in the neighbourhood of the tip spirals. The amplification of the waves travelling along the spiral triggers instabilities, leading to breakdown of the wake. Based on the grid configurations and the type of excitations, two basic flow cases, symmetric and asymmetric, are identified. In the symmetric setup, we impose a 120° symmetry condition in the dynamics of the flow and in the asymmetric setup we calculate the full 360° wake. Different cases are subsequently analysed using dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD). The results reveal that the main instability mechanism is dispersive and that the modal growth in the symmetric setup arises only for some specific frequencies and spatial structures, e.g. two dominant groups of modes with positive growth (spatial structures) are identified, while breaking the symmetry reveals that almost all the modes have positive growth rate. In both setups, the most unstable modes have a non-dimensional spatial growth rate close to $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\pi /2$ and they are characterized by an out-of-phase displacement of successive helix turns leading to local vortex pairing. The present results indicate that the asymmetric case is crucial to study, as the stability characteristics of the flow change significantly compared to the symmetric configurations. Based on the constant non-dimensional growth rate of disturbances, we derive a new analytical relationship between the length of the wake up to the turbulent breakdown and the operating conditions of a wind turbine.


1997 ◽  
Vol 50 (2) ◽  
pp. 309 ◽  
Author(s):  
Y. N. Nejoh

The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with positrons. We have presented the region of existence of the ion-acoustic waves by analysing the structure of the pseudopotential. The region of existence sensitively depends on the positron to electron density ratio, the ion to electron mass ratio and the positron to electron temperature ratio. It is shown that the maximum Mach number increases as the positron temperature increases and the region of existence of the ion-acoustic waves spreads as the positron temperature increases. The present theory is applicable to analyse large amplitude ion-acoustic waves associated with positrons which may occur in space plasmas.


2010 ◽  
Vol 14 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Praveen Sharma ◽  
Ram Prajapati ◽  
Rajendra Chhajlani

The linear Rayleigh-Taylor instability of two superposed incompressible magnetized fluids is investigated incorporating the effects of suspended dust particles and viscosity. The basic magnetohydrodynamic set of equations have been constructed and linearized. The dispersion relation for 2-D and 3-D perturbations is obtained by applying the appropriate boundary conditions. The condition of Rayleigh-Taylor instability is investigated for potentially stable and unstable modes, which depends upon magnetic field, viscosity and suspended dust particles. The stability of the system is discussed by applying the Routh-Hurwitz criterion. It is found that the Alfven mode comes into the dispersion relation for perturbations in x, y-directions and in only x-direction, while it does not come into y-directional perturbation. The stable configuration is found to remain stable even in the presence of suspended dust particles. Numerical calculations have been performed to see the effects of various parameters on the growth rate of Rayleigh-Taylor instability. It is found that magnetic field and relaxation frequency of suspended dust particles both have destabilizing influence on the growth rate of Rayleigh-Taylor instability. The effects of kinematic viscosity and mass concentration of dust particles are found to have stabilized the growth rate of linear Rayleigh-Taylor instability.


2008 ◽  
Vol 12 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Aiyub Khan ◽  
Neha Sharma ◽  
P.K. Bhatia

The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids has been investigated in the taking account of effects of surface tension, when the whole system is immersed in a uniform horizontal magnetic field. The streaming motion is assumed to be two-dimensional. The stability analysis has been carried out for two highly viscous fluid of uniform densities. The dispersion relation has been derived and solved numerically. It is found that the effect of viscosity, porosity and surface tension have stabilizing influence on the growth rate of the unstable mode, while streaming velocity has a destabilizing influence on the system.


Sign in / Sign up

Export Citation Format

Share Document