Parametric investigation of self-similar decay laws in MHD turbulent flows

1999 ◽  
Vol 61 (3) ◽  
pp. 507-541 ◽  
Author(s):  
S. GALTIER ◽  
E. ZIENICKE ◽  
H. POLITANO ◽  
A. POUQUET

An investigation of the decay laws of energy and of higher moments of the Elsässer fields z±=v±b in the self-similar regime of magnetohydrodynamic (MHD) turbulence is presented, using phenomenological models as well as two-dimensional numerical simulations with periodic boundary conditions and up to 20482 grid points. The results are compared with the generalization of the parameter-free model derived by Galtier et al. [Phys. Rev. Lett.79, 2807 (1997)], which takes into account the slowing down of the dynamics due to the propagation of Alfvén waves. The new model developed here allows for a study in terms of one parameter governing the wavenumber dependence of the energy spectrum at scales of the order of (and larger than) the integral scale of the flow. The one-dimensional compressible case is also dealt with in two of its simplest configurations. Computations are performed for a standard Laplacian diffusion as well as with a hyperdiffusive algorithm. The results are sensitive to the amount of correlation between the velocity and the magnetic field, but rather insensitive to all other parameters such as the initial ratio of kinetic to magnetic energy or the presence or absence of a uniform component of the magnetic field. In all cases, the decay is significantly slower than for neutral fluids in a way that favours for MHD flows the phenomenology of Iroshnikov [Soviet Astron.7, 566 (1963)] and Kraichnan [Phys. Fluids8, 1385 (1965)] as opposed to that of Kolmogorov [Dokl. Akad. Nauk. SSSR31, 538 (1941)]. The temporal evolution of q-moments of the generalized vorticities 〈[mid ]ω±[mid ]q〉 =〈[mid ]ω±j[mid ]q〉 up to order q=10 is also given, and is compared with the prediction of the model. Less agreement obtains as q grows – a fact probably due to intermittency and the development of coherent structures in the form of eddies, and of vorticity and current sheets.

2019 ◽  
Vol 37 (5) ◽  
pp. 825-834 ◽  
Author(s):  
Yasuhito Narita ◽  
Wolfgang Baumjohann ◽  
Rudolf A. Treumann

Abstract. There is an increasing amount of observational evidence in space plasmas for the breakdown of inertial-range spectra of magnetohydrodynamic (MHD) turbulence on spatial scales smaller than the ion-inertial length. Magnetic energy spectra often exhibit a steepening, which is reminiscent of dissipation of turbulence energy, for example in wave–particle interactions. Electric energy spectra, on the other hand, tend to be flatter than those of MHD turbulence, which is indicative of a dispersive process converting magnetic into electric energy in electromagnetic wave excitation. Here we develop a model of the scaling laws and the power spectra for the Hall inertial range in plasma turbulence. In the present paper we consider a two-dimensional geometry with no wave vector component parallel to the magnetic field as is appropriate in Hall MHD. A phenomenological approach is taken. The Hall electric field attains an electrostatic component when the wave vectors are perpendicular to the mean magnetic field. The power spectra of Hall turbulence are steep for the magnetic field with a slope of -7/3 for compressible magnetic turbulence; they are flatter for the Hall electric field with a slope of -1/3. Our model for the Hall turbulence gives a possible explanation for the steepening of the magnetic energy spectra in the solar wind as an indication of neither the dissipation range nor the dispersive range but as the Hall inertial range. Our model also reproduces the shape of energy spectra in Kelvin–Helmholtz turbulence observed at the Earth's magnetopause.


2021 ◽  
Vol 44 ◽  
pp. 92-95
Author(s):  
A.I. Podgorny ◽  
◽  
I.M. Podgorny ◽  
A.V. Borisenko ◽  
N.S. Meshalkina ◽  
...  

Primordial release of solar flare energy high in corona (at altitudes 1/40 - 1/20 of the solar radius) is explained by release of the magnetic energy of the current sheet. The observed manifestations of the flare are explained by the electrodynamical model of a solar flare proposed by I. M. Podgorny. To study the flare mechanism is necessary to perform MHD simulations above a real active region (AR). MHD simulation in the solar corona in the real scale of time can only be carried out thanks to parallel calculations using CUDA technology. Methods have been developed for stabilizing numerical instabilities that arise near the boundary of the computational domain. Methods are applicable for low viscosities in the main part of the domain, for which the flare energy is effectively accumulated near the singularities of the magnetic field. Singular lines of the magnetic field, near which the field can have a rather complex configuration, coincide or are located near the observed positions of the flare.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


1984 ◽  
Vol 144 ◽  
pp. 1-11 ◽  
Author(s):  
Ya. B. Zel'Dovich ◽  
A. A. Ruzmaikin ◽  
S. A. Molchanov ◽  
D. D. Sokoloff

A magnetic field is shown to be asymptotically (t → ∞) decaying in a flow of finite conductivity with v = Cr, where C = Cζ(t) is a random matrix. The decay is exponential, and its rate does not depend on the conductivity. However, the magnetic energy increases exponentially owing to growth of the domain occupied by the field. The spatial distribution of the magnetic field is a set of thin ropes and (or) layers.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1014 ◽  
Author(s):  
Essam R. EL-Zahar ◽  
Ahmed M. Rashad ◽  
Laila F. Seddek

The spotlight of this investigation is primarily the effectiveness of the magnetic field on the natural convective for a Fe3O4 ferrofluid flow over a vertical radiate plate using streamwise sinusoidal variation in surface temperature. The energy equation is reduplicated by interpolating the non-linear radiation effectiveness. The original equations describing the ferrofluid motion and energy are converted into non-dimensional equations and solved numerically using a new hybrid linearization-differential quadrature method (HLDQM). HLDQM is a high order semi-analytical numerical method that results in analytical solutions in η -direction, and so the solutions are valid overall in the η domain, not only at grid points. The dimensionless velocity and temperature curves are elaborated. Furthermore, the engineering curiosity of the drag coefficient and local Nusselt number are debated and sketched in view of various emerging parameters. The analyzed numerical results display that applying the magnetic field to the ferroliquid generates a dragging force that diminishes the ferrofluid velocity, whereas it is found to boost the temperature curves. Furthermore, the drag coefficient sufficiently minifies, while an evolution in the heat transfer rate occurs as nanoparticle volume fraction builds. Additionally, the augmentation in temperature ratio parameter signifies a considerable growth in the drag coefficient and Nusselt number. The current theoretical investigation may be beneficial in manufacturing processes, development of transport of energy, and heat resources.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1306
Author(s):  
Kirill Bronnikov ◽  
Vladimir Krechet ◽  
Vadim Oshurko

We find a family of exact solutions to the Einstein–Maxwell equations for rotating cylindrically symmetric distributions of a perfect fluid with the equation of state p=wρ (|w|<1), carrying a circular electric current in the angular direction. This current creates a magnetic field along the z axis. Some of the solutions describe geometries resembling that of Melvin’s static magnetic universe and contain a regular symmetry axis, while some others (in the case w>0) describe traversable wormhole geometries which do not contain a symmetry axis. Unlike Melvin’s solution, those with rotation and a magnetic field cannot be vacuum and require a current. The wormhole solutions admit matching with flat-space regions on both sides of the throat, thus forming a cylindrical wormhole configuration potentially visible for distant observers residing in flat or weakly curved parts of space. The thin shells, located at junctions between the inner (wormhole) and outer (flat) regions, consist of matter satisfying the Weak Energy Condition under a proper choice of the free parameters of the model, which thus forms new examples of phantom-free wormhole models in general relativity. In the limit w→1, the magnetic field tends to zero, and the wormhole model tends to the one obtained previously, where the source of gravity is stiff matter with the equation of state p=ρ.


1981 ◽  
Vol 34 (3) ◽  
pp. 279 ◽  
Author(s):  
I Lerche

An investigation is made of the self-similar flow behind a cylindrical blast wave from a line explosion (situated on r = 0, using conventional cylindrical coordinates r, 4>, z) in a medium whose density and magnetic field both vary as r -w ahead of the blast front, with the assumption that the flow is isothermal. The magnetic field can have components in both the azimuthal B(jJ and longitudinal B, directions. It is found that: (i) For B(jJ =f:. 0 =f:. B, a continuous single-valued solution with a velocity field representing outflow of material away from the line of explosion does not exist for OJ OJ > 0 the governing equation possesses a set of movable critical points. In this case it is shown that the fluid flow velocity is bracketed between two curves and that the asymptotes of the velocity curve on the shock are intersected by, or are tangent to, the two curves. Thus a solution always exists in the physical domain r ~ o. The overall conclusion from the investigation is that the behaviour of isothermal blast waves in the presence of an ambient magnetic field differs substantially from the behaviour calculated for no magnetic field. These results have an impact upon previous applications of the theory of self-similar flows to evolving supernova remnants without allowance for the dynamical influence of magnetic pressure and magnetic tension.


2017 ◽  
Vol 83 (1) ◽  
Author(s):  
Amnon Fruchtman

Penetration of a magnetic field into plasma that is faster than resistive diffusion can be induced by the Hall electric field in a non-uniform plasma. This mechanism explained successfully the measured velocity of the magnetic field penetration into pulsed plasmas. Major related issues have not yet been resolved. Such is the theoretically predicted, but so far not verified experimentally, high magnetic energy dissipation, as well as the correlation between the directions of the density gradient and of the field penetration.


1993 ◽  
Vol 157 ◽  
pp. 19-23
Author(s):  
J.H.G.M. van Geffen

The idea behind the use of ensemble averaging and the finite magnetic energy method of van Geffen and Hoyng (1992) is briefly discussed. Applying this method to the solar dynamo shows that the turbulence — an essential ingredient of traditional mean field dynamo theory — poses grave problems: the turbulence makes the magnetic field so unstable that it becomes impossible to recognize any period.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 104 ◽  
Author(s):  
Efrain J. Ferrer ◽  
Aric Hackebill

We discuss how a magnetic field can affect the equation of state of a many-particle neutron system. We show that, due to the anisotropy in the pressures, the pressure transverse to the magnetic field direction increases with the magnetic field, while the one along the field direction decreases. We also show that in this medium there exists a significant negative field-dependent contribution associated with the vacuum pressure. This negative pressure demands a neutron density sufficiently high (corresponding to a baryonic chemical potential of μ = 2.25 GeV) to produce the necessary positive matter pressure that can compensate for the gravitational pull. The decrease of the parallel pressure with the field limits the maximum magnetic field to a value of the order of 10 18 G, where the pressure decays to zero. We show that the combination of all these effects produces an insignificant variation of the system equation of state. We also found that this neutron system exhibits paramagnetic behavior expressed by the Curie’s law in the high-temperature regime. The reported results may be of interest for the astrophysics of compact objects such as magnetars, which are endowed with substantial magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document