scholarly journals The influence of dietary fatty acids on liver fat content and metabolism – ERRATUM

2019 ◽  
Vol 78 (3) ◽  
pp. 473-473 ◽  
Author(s):  
Leanne Hodson ◽  
Fredrik Rosqvist ◽  
Siôn A Parry
2019 ◽  
Vol 79 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Leanne Hodson ◽  
Fredrik Rosqvist ◽  
Siôn A Parry

Non-alcoholic fatty liver disease encompasses a spectrum of conditions from hepatic steatosis through to cirrhosis; obesity is a known risk factor. The liver plays a major role in regulating fatty acid metabolism and perturbations in intrahepatic processes have potential to impact on metabolic health. It remains unclear why intra-hepatocellular fat starts to accumulate, but it likely involves an imbalance between fatty acid delivery to the liver, fatty acid synthesis and oxidation within the liver and TAG export from the liver. As man spends the majority of the day in a postprandial rather than postabsorptive state, dietary fatty acid intake should be taken into consideration when investigating why intra-hepatic fat starts to accumulate. This review will discuss the impact of the quantity and quality of dietary fatty acids on liver fat accumulation and metabolism, along with some of the potential mechanisms involved. Studies investigating the role of dietary fat in liver fat accumulation, although surprisingly limited, have clearly demonstrated that it is total energy intake, rather than fat intake per se, that is a key mediator of liver fat content; hyperenergetic diets increase liver fat whilst hypoenergetic diets decrease liver fat content irrespective of total fat content. Moreover, there is now, albeit limited evidence emerging to suggest the composition of dietary fat may also play a role in liver fat accumulation, with diets enriched in saturated fat appearing to increase liver fat content to a greater extent when compared with diets enriched in unsaturated fats.


2020 ◽  
Vol 8 (1) ◽  
pp. e001342 ◽  
Author(s):  
Giuseppe Della Pepa ◽  
Claudia Vetrani ◽  
Valentina Brancato ◽  
Marilena Vitale ◽  
Serena Monti ◽  
...  

IntroductionTreatment options for non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes (T2D) are still a matter of debate. We compared the effects of a diet including different components versus a proven beneficial diet rich in monounsaturated fatty acids (MUFAs) on liver fat in T2D.Research design and methodsAccording to a parallel design, 49 individuals with T2D, overweight/obese, with high waist circumference, 35–75 years-old, in satisfactory blood glucose control with diet or drugs not affecting liver fat content, were randomly assigned to an 8-week isocaloric intervention with a MUFA diet (n=26) or a multifactorial diet rich in fiber, MUFA, n-6 and n-3 polyunsaturated fatty acids, polyphenols, and vitamins D, E, and C (n=23). Before and after the intervention, liver fat content was evaluated by proton magnetic resonance spectroscopy (1H-MRS). 1H-MRS complete data were available for n=21 (MUFA diet) and n=18 (multifactorial diet) participants.ResultsAdherence to dietary interventions was optimal. No significant differences between groups in body weight reduction, plasma glycated hemoglobin, insulin, glucose, lipids and liver enzymes were observed. Liver fat significantly decreased after both the multifactorial diet (9.18%±7.78% vs 5.22%±4.80%, p=0.003) and the MUFA diet (9.47%±8.89% vs 8.07%±8.52%, p=0.027) with a statistically significant difference between changes either in absolute terms (−4.0%±4.5% vs −1.4%±2.7%, p=0.035) or percent (−40%±33% vs −19%±25%, p=0.030).ConclusionsAn isocaloric multifactorial diet including several beneficial dietary components induced a clinically relevant reduction of liver fat in patients with T2D, more pronounced than that induced by simply replacing saturated fat with MUFA. This suggests that the ‘optimal diet’ for NAFLD treatment in T2D should be based on synergic actions of different dietary components on multiple pathophysiological pathways.Trial registration numberNCT03380416.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1834-P
Author(s):  
SVIATLANA V. ZHYZHNEUSKAYA ◽  
AHMAD AL-MRABEH ◽  
CARL PETERS ◽  
ALISON C. BARNES ◽  
KIEREN G. HOLLINGSWORTH ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 115-LB
Author(s):  
MIRIAM KIDRON ◽  
SHARON PERLES ◽  
REEM KALOTI ◽  
RAMI GHANTOUS ◽  
SUHA F. SANDOUKA ◽  
...  

BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e044237
Author(s):  
Xiaoming Li ◽  
Mingfeng Xia ◽  
Hui Ma ◽  
Yu Hu ◽  
Hongmei Yan ◽  
...  

ObjectiveNon-alcoholic fatty liver disease (NAFLD) is associated with microalbuminuria (MA) in patients with diabetes/pre-diabetes. Whether this association is mediated by blood glucose and blood pressure (BP) remains unclear. This study investigated whether liver fat content (LFC) was associated with MA in a normotensive and non-diabetic population.DesignA cross-sectional substudy.SettingsLFC was determined from the hepatic/renal echogenicity ratio at ultrasound. MA was defined as an albumin-to-creatinine ratio (ACR) of 30–300 µg/mg (early- morning urine sample). Multivariable logistic regression and receiver operating characteristic (ROC) curve analyses were used to evaluate LFC as a predictor of MA.ParticipantsBetween May 2010 and June 2011, this cross-sectional, community-based study enrolled residents from Shanghai (China), aged ≥40 years and with normal glucose tolerance and BP.ResultsA total of 550 residents (median age, 57 years; 174 men) were enrolled and stratified according to LFC quartiles. ACR (p<0.001) and MA prevalence (p=0.012) increased across the LFC quartiles. Multivariable logistic regression showed that the OR for MA (per SD increase in LFC) was 1.840 (95% CI 1.173 to 2.887, p=0.008) after adjustment for potential confounders including age, gender, waist-hip ratio, blood urea nitrogen, systolic and diastolic BP, fasting blood glucose, postprandial glucose, low-density lipoprotein-cholesterol, triglycerides, high-density lipoprotein-cholesterol, total cholesterol, estimated glomerular filtration rate and lipid-lowering drugs. The ROC analysis revealed that the optimal LFC cut-off value for predicting MA was 6.82%.ConclusionLFC is independently associated with MA in normotensive, euglycaemic middle-aged and elderly Chinese individuals. Screening for MA in people with NAFLD might facilitate early intervention to minimise kidney disease risk.


2006 ◽  
Vol 291 (2) ◽  
pp. E282-E290 ◽  
Author(s):  
Riikka Lautamäki ◽  
Ronald Borra ◽  
Patricia Iozzo ◽  
Markku Komu ◽  
Terho Lehtimäki ◽  
...  

Nonalcoholic fatty liver (NAFL) is a common comorbidity in patients with type 2 diabetes and links to the risk of coronary syndromes. The aim was to determine the manifestations of metabolic syndrome in different organs in patients with liver steatosis. We studied 55 type 2 diabetic patients with coronary artery disease using positron emission tomography. Myocardial perfusion was measured with [15O]H2O and myocardial and skeletal muscle glucose uptake with 2-deoxy-2-[18F]fluoro-d-glucose during hyperinsulinemic euglycemia. Liver fat content was determined by magnetic resonance proton spectroscopy. Patients were divided on the basis of their median (8%) into two groups with low (4.6 ± 2.0%) and high (17.4 ± 8.0%) liver fat content. The groups were well matched for age, BMI, and fasting plasma glucose. In addition to insulin resistance at the whole body level ( P = 0.012) and muscle ( P = 0.002), the high liver fat group had lower insulin-stimulated myocardial glucose uptake ( P = 0.040) and glucose extraction rate ( P = 0.0006) compared with the low liver fat group. In multiple regression analysis, liver fat content was the most significant explanatory variable for myocardial insulin resistance. In addition, the high liver fat group had increased concentrations of high sensitivity C-reactive protein, soluble forms of E-selectin, vascular adhesion protein-1, and intercellular adhesion molecule-1 ( P < 0.05) and lower coronary flow reserve ( P = 0.02) compared with the low liver fat group. In conclusion, in patients with type 2 diabetes and coronary artery disease, liver fat content is a novel independent indicator of myocardial insulin resistance and reduced coronary functional capacity. Further studies will reveal the effect of hepatic fat reduction on myocardial metabolism and coronary function.


1985 ◽  
Vol 36 (6) ◽  
pp. 829 ◽  
Author(s):  
SJ Al-Ali ◽  
NM Malouf ◽  
DM Walker

Preruminant male crossbred lambs, aged 1-2 days at the start of the experiment, were bottle-fed on milk replacers containing casein as the sole source of protein for an experimental period of 15-21 days. Choline-deficient diets were used in experiment 1 to determine the effect on the performance of the lambs of thc dictary protein concentration (10, 15 and 25% protein energy), and in experiment 2 of different sources of fat (butter oil, maize oil or lard), unsupplemented, or with supplements of choline chloride or L-cystine. Supplements of choline chloride decreased liver fat content and decreased urinary creatine excretion, irrespective of dietary protein concentration or source of dietary fat. Ira general, urinary ammonia excretion increased as the sulfur amino acid content of the diets increased, but there were interactions with the source of fat, so that although sulfur intake remained constant ammonia excretion was higher with diets containing lard than with those containing maize oil or butter oil. The effect of the supplements of 1,-cystine on liver fat content and urinary creatine excretion was not significantly different from that of the unsupplemented choline-deficient diets. In experiments 3 and 4 a choline-deficient diet with 25% protein energy and butter oil as the source of fat was supplemented with graded amounts of choline chloride. Energy intake was ad libitum, or restricted to 80% of ad libitum. When the lambs were fed ad libitum there was a significant decrease in liver fat content even with the smallest supplement of choline chloride (c. 9 mg MJ-1 gross energy), but no significant effect when energy intake was restricted. Since liveweight gains and nitrogen balances were unaffected by the presence or absence of the choline supplements it was concluded that in milk replacers containing 25% protein energy from casein, with butter oil as the source of fat, supplementation with choline chloride to provide 9 mg MJ-1 gross energy (233 mg kg-1 dry matter) would be sufficient to prevent the increased deposition of fat in the liver during the 6rst three weeks of life.


Diabetologia ◽  
2006 ◽  
Vol 49 (4) ◽  
pp. 755-765 ◽  
Author(s):  
M. Adiels ◽  
M.-R. Taskinen ◽  
C. Packard ◽  
M. J. Caslake ◽  
A. Soro-Paavonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document