Repair ofHymenolepis diminutaafter complement-mediated damage

Parasitology ◽  
1989 ◽  
Vol 99 (3) ◽  
pp. 437-443 ◽  
Author(s):  
J. Andreassen ◽  
D. Hoole

SummarySeven and 56-day-oldHymenolepis diminutawere exposed to complement by incubation in 50% normal rat serum (NRS) in modified Hanks' saline. Ultrastructural studies revealed that the scolex/neck region remained relatively intact whilst in the strobila region microthrix denudation and loss of distal cytoplasm were observed. When complement-mediated damaged worms were incubated in vitro in 50% heat-inactivated normal rat serum (hiNRS) plus M199 or implanted into the duodenum of NMRI mice repair occurred, although destrobilated parasites were only foundin vivo. The regions undergoing repair contained tegumental protrusions, vesicles, large electron-lucent areas and large quantities of lipid. Microtriches were formed parallel to the parasite surface and were raised into a perpendicular position. It is suggested that the regenerative process exhibited after complement-mediated damage does not mimic totally the embryological development of the surface layer.

Parasitology ◽  
1997 ◽  
Vol 115 (6) ◽  
pp. 667-671 ◽  
Author(s):  
K. TAYLOR ◽  
J. R. KUSEL ◽  
D. HOOLE

Regional differences of Hymenolepis diminuta to immune lysis have been investigated by monitoring surface membrane fluidity utilizing fluorescence recovery after photobleaching (FRAP). Although the surface membrane of the newly excysted stage was completely immobile the molecular fluidity of the strobila membrane of 4-day-old parasites was greater than that associated with the scolex/neck region. Significant differences (P>0·001) occurred in the mobility of the strobila membrane of 4-day-old H. diminuta from 100-worm infections compared with 7- and 21-day-old parasites and 4-day-old individuals from 10-worm infections. Exposure to 50% normal rat serum and 1 mg/ml rat C reactive protein decreased or eliminated membrane fluidity. The significance of membrane mobility is discussed with reference to resistance to complement-mediated lysis and destrobilation.


Parasitology ◽  
1991 ◽  
Vol 102 (1) ◽  
pp. 65-72
Author(s):  
C. Xu ◽  
S. Xu

SUMMARYThe results of studies on the schistosomulicidal activity of activated peritoneal and alveolar macrophages (pMø and aMø) from rats immunized with highly irradiated (50 krad.)Schistosoma japonicumcercariae are reported. The authors have examined the activation of these macrophages in terms of spreading, adhesion and ingestion of sheep erythrocytes and pinocytosis of horse-radish peroxidase. Using three criteria, peritoneal macrophages and alveolar macrophages from immunized rats and from rats intraperitoneally injected with BCG were significantly more active than those from normal rats or rats stimulated with 10% proteose-peptone or 1% sodium thioglycolate. A significantly higher percentage of adhesion and ingestion was obtained with the sheep erythrocytes that were co-opsonized by heat-inactivated rat anti-sheep erythrocyte serum and fresh normal rat serum. Schistosomulicidal effects were observed with macrophages from irradiated cercariae-immunized rats in two activation systems:in vitroactivation in the presence of macrophage-activating factor (MAF), andin vivoactivation by the intraperitoneal challenge with sonicated cercarial antigens.


Author(s):  
Conly L. Rieder ◽  
S. Bowser ◽  
R. Nowogrodzki ◽  
K. Ross ◽  
G. Sluder

Eggs have long been a favorite material for studying the mechanism of karyokinesis in-vivo and in-vitro. They can be obtained in great numbers and, when fertilized, divide synchronously over many cell cycles. However, they are not considered to be a practical system for ultrastructural studies on the mitotic apparatus (MA) for several reasons, the most obvious of which is that sectioning them is a formidable task: over 1000 ultra-thin sections need to be cut from a single 80-100 μm diameter egg and of these sections only a small percentage will contain the area or structure of interest. Thus it is difficult and time consuming to obtain reliable ultrastructural data concerning the MA of eggs; and when it is obtained it is necessarily based on a small sample size.We have recently developed a procedure which will facilitate many studies concerned with the ultrastructure of the MA in eggs. It is based on the availability of biological HVEM's and on the observation that 0.25 μm thick serial sections can be screened at high resolution for content (after mounting on slot grids and staining with uranyl and lead) by phase contrast light microscopy (LM; Figs 1-2).


2003 ◽  
Vol 71 (11) ◽  
pp. 6648-6652 ◽  
Author(s):  
Steven Giles ◽  
Charles Czuprynski

ABSTRACT In this study we found that serum inhibitory activity against Blastomyces dermatitidis was principally mediated by albumin. This was confirmed in experiments using albumin from several mammalian species. Analbuminemic rat serum did not inhibit B. dermatitidis growth in vivo; however, the addition of albumin restored inhibitory activity. Inhibitory activity does not require albumin domain III and appears to involve binding of a low-molecular-weight yeast-derived growth factor.


1996 ◽  
Vol 270 (3) ◽  
pp. G487-G491 ◽  
Author(s):  
A. Strocchi ◽  
G. Corazza ◽  
J. Furne ◽  
C. Fine ◽  
A. Di Sario ◽  
...  

Normal intestinal absorption of nutrients requires efficient luminal mixing to deliver solute to the brush border. Lacking such mixing, the buildup of thick unstirred layers over the mucosa markedly retards absorption of rapidly transported compounds. Using a technique based on the kinetics of maltose hydrolysis, we measured the unstirred layer thickness of the jejunum of normal subjects and patients with celiac disease, as well as that of the normal rat. The jejunum of humans and rats was perfused with varying maltose concentrations, and the apparent Michaelis constant (Km) and maximal velocity (Vmax) of maltose hydrolysis were determined from double-reciprocal plots. The true Km of intestinal maltase was determined on mucosal biopsies. Unstirred layer thickness was calculated from the in vivo Vmax and apparent Km and the in vitro Km of maltase. The average unstirred layer thickness of 11 celiac patients (170 micron) was seven times greater than that of 3 controls (25 micron). The unstirred layer of each celiac exceeded that of the controls. A variety of factors could account for the less efficient luminal stirring observed in celiacs. Although speculative, villous contractility could be an important stirring mechanism that would be absent in celiacs with villous atrophy. This speculation was supported by the finding of a relatively thick unstirred layer (mean: 106 micron) in rats, an animal that lacks villous contractility. Because any increase in unstirred layer slows transport of rapidly absorbed compounds, poor stirring appears to represent a previously unrecognized defect that could contribute to malabsorption in celiac disease and, perhaps, in other intestinal disorders.


Parasitology ◽  
1975 ◽  
Vol 71 (2) ◽  
pp. 275-283 ◽  
Author(s):  
R. J. Love ◽  
Bridget M. Ogilvie ◽  
Diane J. McLaren

When adult Nippostrongylus brasiliensis were maintained in vitro they became damaged. Using the criteria of ultrastructural morphology, acetylcholinesterase isoenzyme pattern and the behaviour of the worms after transfer to a normal rat, this damage appeared to be similar to that produced by the in vivo action of antibodies.Antibodies were shown to be responsible for the anterior migration of adult worms which occurs during primary infections in mature rats and in the prolonged infections seen in lactating and immature rats.Antibody damaged worms and worms unaffected by antibodies were equally able to stimulate the immune response required for worm expulsion. Apparently antibody damage is not required for the initiation of the second immune component necessary for expulsion of this parasite.


2015 ◽  
Vol 39 (3) ◽  
pp. 439-445 ◽  
Author(s):  
Laureen Michelle Houllou ◽  
Robson Antônio de Souza ◽  
Elizabete Cristina Pacheco dos Santos ◽  
José Jackson Pereira da Silva ◽  
Marta Ribeiro Barbosa ◽  
...  

ABSTRACTThe study was conducted with shoot tip explants of neem (Azadirachta indica A. Juss) to identify a viable regenerative process. Shoot tips were obtained from neem embryos cultured alternatingly in DKW medium supplemented with BAP and medium without hormones. Initial shoot development was influenced by cotyledon presence. Basal callus, excised from in vitro stem base, also presented organogenic potential. In some cases, plant lines, obtained from each seed, presented different characteristics. The most common characteristic observed in vitro was callus formation at the stem base. However, the rarest characteristics were stem callus formation and leaf senescence. The regenerated shoot tips were further subculture and rooted on a medium supplemented with IBA so that complete plants could be obtained. The rooted plants were transplanted to a greenhouse and successfully acclimatized. No significant differences in in vivo development were observed between neem plants from callus and from shoot tip propagation.


1989 ◽  
Vol 92 (1) ◽  
pp. 9-20 ◽  
Author(s):  
E. Boisvieux-Ulrich ◽  
M.C. Laine ◽  
D. Sandoz

When induced by in vivo oestrogen stimulation, ciliogenesis continues in culture in vitro of quail oviduct implants. Ultrastructure of ciliogenic cells was compared after culture for 24 or 48 h in the presence or absence of 10(−5) M-taxol. Taxol, which promotes polymerization and stabilization of microtubules, disturbed ciliogenesis, but formation of basal bodies was unaffected by the drug. Conversely, their migration towards the apical surface seemed to be slowed down or blocked and axonemal doublets polymerized onto the distal end of cytoplasmic basal bodies. They elongated and often constituted a more or less complete axoneme, extending between organelles in various orientations. These axonemes, often abnormal, were not surrounded by a membrane, with the exception of the transitional or neck region between the basal body and axoneme. The formation of membrane in this area resulted from the binding of some vesicles to the anchoring fibres of the basal body. They fused in various numbers, occasionally forming a ring, at the site of the transitional region, and exhibited the characteristics of the ciliary necklace. The association of basal bodies with vesicles or with the plasma membrane appeared to be a necessary signal for in situ polymerization of axonemal doublets. In addition, taxol induced polymerization of numerous microtubules in the cytoplasm, especially in the apical part of the cell and in the Golgi area. This network of microtubules may prevent basal body migration.


1987 ◽  
Vol 253 (4) ◽  
pp. E331-E335 ◽  
Author(s):  
D. A. Young ◽  
H. Wallberg-Henriksson ◽  
M. D. Sleeper ◽  
J. O. Holloszy

Exercise is associated with an increase in permeability of muscle to glucose that reverses slowly (h) in fasting rats during recovery. Previous studies showed that carbohydrate feeding speeds and carbohydrate restriction slows reversal of the exercise-induced increase in glucose uptake. This study was designed to evaluate the roles of glucose transport, glycogen synthesis, and protein synthesis in the reversal process in rat epitrochlearis muscle. In contrast to recovery in vivo, when muscles were incubated without insulin in vitro, the exercise-induced increase in muscle permeability to sugar reversed rapidly regardless of whether glucose transport or glycogen synthesis occurred. Inhibition of protein synthesis did not prevent the reversal. Addition of 33% rat serum or a low concentration of insulin to the incubation medium markedly slowed reversal in vitro. We conclude that 1) prolonged persistence of the increased permeability of mammalian muscle to glucose after exercise requires a low concentration of insulin, and 2) reversal of the increase in permeability does not require glucose transport, glycogen synthesis, or protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document