Oxadiazon for Weed Control in Woody Ornamentals

Weed Science ◽  
1979 ◽  
Vol 27 (4) ◽  
pp. 396-400 ◽  
Author(s):  
Richard E. Bailey ◽  
James A. Simmons

Weed competition in the commercial production of woody ornamentals results in substantial economic losses annually due to increased labor costs and reductions in plant growth and quality. Container and field experiments were established in 1975 and continued through 1976 to evaluate oxadiazon [2-tert-butyl-4-(2,4-dichloro-5-isopropoxyphenyl)-δ2-1,3,4-oxadiazolin-5-one] as a weed control agent and to determine its effect on ornamentals at selected test sites throughout the United States. Test programs were conducted with container and field grown ornamentals at 10 locations during 1975 and subsequently increased to 12 locations in 1976. Rates evaluated included 3.4, 4.5, 5.6 and 11.2 kg/ha. Highly effective control of 17 weeds was obtained for 3-month periods at rates as low as 4.5 kg/ha. Oxadiazon gave commercially acceptable control of common groundsel (Senecio vulgaris L.), a very serious weed problem in containers. Control of common chickweed [Stellaria media (L.) Cyrillo], however, was poor at all rates tested. Ornamental tolerance to oxadiazon was generally excellent. Of the 50 ornamental species evaluated in 1975, only two displayed phytotoxic symptoms; scarlet firethorn (Pyracantha coccinea Roem.) and Chinese privet (Ligustrum sinense Lour.) at 5.6 and 11.2 kg/ha following three successive applications at 3-month intervals. In 1976 trials on 63 species, phytotoxic symptoms could not be reproduced on the above species; chemical intolerance was limited to growth inhibition of aloe yucca (Yucca aloifolia L.) at 5.6 and 11.2 kg/ha.

2006 ◽  
Vol 20 (3) ◽  
pp. 622-626 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
John C. Frihauf

Field experiments were conducted during 2003 and 2004 to compare the effectiveness of KIH-485 and S-metolachlor for PRE weed control in no-tillage and conventional-tillage corn. Longspine sandbur control increased as KIH-485 or S-metolachlor rates increased in conventional-tillage corn, but control did not exceed 75% when averaged over experiments. Both herbicides controlled at least 87% of green foxtail with the exception of no-tillage corn in 2004, when KIH-485 was more effective than S-metolachlor at lower rates. Palmer amaranth control ranged from 85 to 100% in 2003 and 80 to 100% in 2004, with the exception of only 57 to 76% control at the lowest two S-metolachlor rates in 2004. Puncturevine control exceeded 94% with all treatments in 2003. In 2004, KIH-485 controlled 86 to 96% of the puncturevine, whereas S-metolachlor controlled only 70 to 81%. Mixtures of atrazine with KIH-485 or S-metolachlor generally provided the most effective control of broadleaf weeds studied.


2013 ◽  
Vol 27 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Kelly A. Barnett ◽  
A. Stanley Culpepper ◽  
Alan C. York ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic for cotton growers in the Southeast and Midsouth regions of the United States. Glufosinate can control GR Palmer amaranth, and growers are transitioning to glufosinate-based systems. Palmer amaranth must be small for consistently effective control by glufosinate. Because this weed grows rapidly, growers are not always timely with applications. With widespread resistance to acetolactate synthase-inhibiting herbicides, growers have few herbicide options to mix with glufosinate to improve control of larger weeds. In a field study using a WideStrike®cotton cultivar, we evaluated fluometuron at 140 to 1,120 g ai ha−1mixed with the ammonium salt of glufosinate at 485 g ae ha−1for control of GR Palmer amaranth 13 and 26 cm tall. Standard PRE- and POST-directed herbicides were included in the systems. Glufosinate alone injured the WideStrike® cotton less than 10%. Fluometuron increased injury up to 25% but did not adversely affect yield. Glufosinate controlled 13-cm Palmer amaranth at least 90%, and there was no improvement in weed control nor a cotton yield response to fluometuron mixed with glufosinate. Palmer amaranth 26 cm tall was controlled only 59% by glufosinate. Fluometuron mixed with glufosinate increased control of the larger weeds up to 28% and there was a trend for greater yields. However, delaying applications until weeds were 26 cm reduced yield 22% relative to timely application. Our results suggest fluometuron mixed with glufosinate may be of some benefit when attempting to control large Palmer amaranth. However, mixing fluometuron with glufosinate is not a substitute for a timely glufosinate application.


2015 ◽  
Vol 95 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Amit J. Jhala ◽  
Mayank S. Malik ◽  
John B. Willis

Jhala, A. J., Malik, M. S. and Willis, J. B. 2015. Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean. Can. J. Plant Sci. 95: 973–981. Acetochlor, an acetamide herbicide, has been used for many years for weed control in several crops, including soybean. Micro-encapsulated acetochlor has been recently registered for preplant (PP), pre-emergence (PRE), and post-emergence (POST) application in soybean in the United States. Information is not available regarding the sequential application of acetochlor for weed control and soybean tolerance. The objectives of this research were to determine the effect of application timing of micro-encapsulated acetochlor applied in tank-mixture with glyphosate in single or sequential applications for weed control in glyphosate-resistant soybean, and to determine its impact on soybean injury and yields. Field experiments were conducted at Clay Center, Nebraska, in 2012 and 2013, and at Waverly, Nebraska, in 2013. Acetochlor tank-mixed with glyphosate applied alone PP, PRE, or tank-mixed with flumioxazin, fomesafen, or sulfentrazone plus chlorimuron provided 99% control of common waterhemp, green foxtail, and velvetleaf at 15 d after planting (DAP); however, control declined to ≤40% at 100 DAP. Acetochlor tank-mixed with glyphosate applied PRE followed by early POST (V2 to V3 stage of soybean) or late POST (V4 to V5 stage) resulted in ≥90% control of common waterhemp and green foxtail, reduced weed density to ≤2 plants m−2 and biomass to ≤12 g m−2, and resulted in soybean yields >3775 kg ha−1. The sequential applications of glyphosate plus acetochlor applied PP followed by early POST or late POST resulted in equivalent weed control to the best herbicide combinations included in this study and soybean yield equivalent to the weed free control. Injury to soybean was <10% in each of the treatments evaluated. Micro-encapsulated acetochlor can be a good option for soybean growers for controlling grasses and small-seeded broadleaf weeds if applied in a PRE followed by POST herbicide program in tank-mixture with herbicides of other modes of action.


Weed Science ◽  
1981 ◽  
Vol 29 (3) ◽  
pp. 356-359 ◽  
Author(s):  
P. E. Keeley ◽  
R. J. Thullen

Four field experiments conducted over 3 yr indicated that cultivation alone failed to prevent johnsongrass [Sorghum halepense(L.) Pers.] from reaching densities that severely reduced yields of cotton (Gossypium hirsutumL. ‘Acala SJ-2’). Density of johnsongrass in plots cultivated four times and hoed weekly for 8 weeks after emergence was reduced to 1 shoot/m2at harvest compared to 74 shoots/m2for plots that were only cultivated. In addition to a 60% average yield loss of seed cotton, yield losses ranging from 40 to 76%, ginning losses were also greater from cultivated than from hand-weeded plots. Compared to cultivated plots, supplementing cultivation with two postemergence applications of 3.0 kg/ha of DSMA (disodium methanearsonate) increased the average yield of cotton by 20% and reduced perennial johnsongrass densities by 64% at harvest. Although yields were improved by applying DSMA, they averaged 40% less than those of hand-weeded plots. The temporary weed control obtained with DSMA was profitable in terms of the additional lint and seed obtained, but insufficient cotton was produced to pay expenses for producing the crop by any of the methods of weed control. High labor costs for hoeing prevented this treatment from being profitable.


2015 ◽  
Vol 29 (2) ◽  
pp. 274-283 ◽  
Author(s):  
Eric K. Anderson ◽  
Aaron G. Hager ◽  
DoKyoung Lee ◽  
Damian J. Allen ◽  
Thomas B. Voigt

Miscanthus × giganteus cv. Illinois is a high-yielding perennial grass crop being developed for cellulosic biomass production in the United States. It is a sterile cultivar and must be established using plantlets or rhizomes; this asexual propagation is relatively expensive, thereby limiting more widespread acceptance. Perennial, tetraploid, seeded types of M. × giganteus have been developed that could reduce establishment costs, while producing high biomass yields. Weed control during the year of establishment is essential because this grass crop does not compete well with weeds in the establishment year. Greenhouse and field experiments were conducted to identify PRE and POST herbicides that would not adversely affect seeded M. × giganteus emergence or growth. Imazethapyr and quinclorac applied PRE had no negative affect on M. × giganteus growth in the greenhouse with respect to seedling emergence, plant height, observed injury symptoms, or fresh weight. In the field, plant emergence was significantly higher with quinclorac plus atrazine than the nontreated control, and emergence with isoxaflutole plus atrazine was not significantly different from the control. Six herbicides applied POST in the greenhouse showed little or no negative effect on miscanthus growth. In the field, several PRE plus POST herbicide combinations did not negatively affect M. × giganteus growth; however, none of these provided adequate weed control under irrigated conditions. Further evaluation of PRE and POST herbicides is needed to identify robust weed control options that are safe on seeded M. × giganteus.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 167
Author(s):  
Miriam Hannah Messelhäuser ◽  
Marcus Saile ◽  
Bernd Sievernich ◽  
Roland Gerhards

Effective control of Alopecurus myosuroides Huds. (blackgrass) solely with a chemical treatment is not guaranteed anymore because populations exhibit resistance to almost all herbicide modes of action. Integrated weed management (IWM) against blackgrass is necessary to maintain high weed control efficacies in winter cereals. Four field experiments were conducted in Southwest Germany from 2018 to 2020 to control A. myosuroides with a combination of cultural and chemical methods. Stubble treatments, including flat, deep and inversion soil tillage; false seedbed preparation and glyphosate use, were combined with the application of the new pre-emergence herbicide cinmethylin in two rates in winter wheat. Average densities of A. myosuroides in the untreated control plots were up to 505 plants m−2. The combination of different stubble management strategies and the pre-emergence herbicide cinmethylin controlled 86–97% of A. myosuroides plants at the low rate and 95–100% at the high rate until 120 days after sowing. The different stubble tillage practices varied in their efficacy between trials and years. Most effective and consistent were pre-sowing glyphosate application on the stubble and stale seedbed preparation with a disc harrow. Stubble treatments increased winter wheat density in the first year but had no effect on crop density in the second year. Pre-emergence application of cinmethylin did not reduce winter wheat densities. Multiple tactics of weed control, including stubble treatments and pre-emergence application of cinmethylin, provided higher and more consistent control of A. myosuroides. Integration of cultural weed management could prevent the herbicide resistance development.


1969 ◽  
Vol 61 (2) ◽  
pp. 187-191
Author(s):  
A. Vélez-Ramos ◽  
Abad Morales

Two field experiments were conducted to evaluate herbicides for chemical weed control in sweetpotato plantings at the Isabela and Fortuna, Agricultural Experiment Substations, located in the northwestern humid and southern dry coasts of Puerto Rico, respectively. Pre-emergence herbicides were sprayed on Miguela sweetpotato cultivar two days after planting on weedfree soil. Weed control ratings taken eight weeks after treatment application showed effective control with the use of diphenamid (N,N-dimethyl-2,2- diphenylacetamide) alone or in combination with chloramben (3-amino-2,5- dichlorobenzoic acid) or DCPA (dimethyl tetrachloroterephthalate). There was no visible crop injury. There was no significant difference in tuber yields among herbicidal treatments at the two locations. Yields of herbicide-treated plots were comparable to those obtained from the handweeded control at Fortuna.


1996 ◽  
Vol 10 (2) ◽  
pp. 288-294 ◽  
Author(s):  
Clarence J. Swanton ◽  
Kevin Chandler ◽  
Monica J. Elmes ◽  
Stephen D. Murphy ◽  
Glenn W. Anderson

DPX-79406 was evaluated for POST annual grass weed control in both controlled environment and field experiments. In controlled environment experiments, green foxtail was most susceptible to DPX-79406; whereas yellow foxtail was least susceptible of the species evaluated. DPX-79406 at 12 g/ha completely controlled six leaf black-seeded proso millet, yellow foxtail, green foxtail, and barnyardgrass. In the field, DPX-79406 at 3.0 to 25.0 g/ha effectively controlled annual grass weeds without injury to three- to six-leaf corn. There was more variation in the effectiveness of DPX-79406 applied in the field. Early POST applications provided less weed control than the late application, especially for barnyardgrass, because of weeds emerging after application. As a result, higher doses were sometimes needed for effective control. In weed-free field trials at two sites in 1990 and 1991, corn tolerated doses up to 75 g/ha of DPX-79406 applied at the three- to six-leaf growth stage. However, doses as low as 18.8 g/ha applied at the six- to nine-leaf growth stage reduced grain yield. In 1991, corn tillering increases and height and yield reductions were related linearly to the dose of DPX-79406 applied during later growth stages. DPX-79406 should be applied early POST in order to avoid crop injury while providing effective weed control.


2020 ◽  
pp. 1-20
Author(s):  
Jessica Quinn ◽  
Jamshid Ashigh ◽  
Nader Soltani ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

Abstract Horseweed and giant ragweed are competitive, annual weeds that can negatively impact crop yield. Biotypes of glyphosate-resistant (GR) giant ragweed and horseweed were first reported in 2008 and 2010 in Ontario, respectively. GR horseweed has spread throughout the southern portion of the province. The presence of GR biotypes poses new challenges for soybean producers in Canada and the United States. Halauxifen-methyl is a recently registered selective herbicide for broadleaf weeds, for preplant use in corn and soybean. There is limited literature on the efficacy of halauxifen-methyl on GR horseweed and giant ragweed when combined with currently registered products in Canada. The purpose of the experiment was to determine the effectiveness of halauxifen-methyl applied alone, and tank-mixed for GR giant ragweed and GR horseweed control in glyphosate and dicamba-resistant (GDR) soybean in southwestern Ontario. Six field experiments were conducted separately for each weed species over 2018 and 2019. Halauxifen-methyl applied alone controlled GR horseweed 72% at 8 weeks after application (WAA). Control was improved to >91% when halauxifen-methyl applied in combination with metribuzin, saflufenacil, chlorimuron-ethyl + metribuzin and saflufenacil + metribuzin. At 8 WAA, halauxifen-methyl controlled GR giant ragweed 11%; glyphosate/2,4-D choline, glyphosate/dicamba, glyphosate/2,4-D choline + halauxifen-methyl and glyphosate/dicamba + halauxifen-methyl controlled GR giant ragweed 76 to 88%. This study concluded that halauxifen-methyl applied preplant in a tank-mixture can provide effective control of GR giant ragweed and horseweed in GDR soybean.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Christiane Augusta Diniz Melo ◽  
Amanda Rocha Barbosa ◽  
Roque De Carvalho Dias ◽  
Gustavo Soares da Silva ◽  
Marcelo Rodrigues dos Reis

The recommended application of most herbicides in onion crops is after transplanting seedlings with four true leaves. In the direct sowing system, this recommendation is considered late; an alternative management is the application of reduced doses starting with a true leaf. The objective of this study was to evaluate the use of reduced doses of flumioxazin in the early phenological stages of onions on bulb yield. Two field experiments were installed, and five doses of flumioxazin (5, 10, 15, 20, and 25 g ha-1) were applied in three phenological stages (1st, 2nd, and 1st+3rd true leaf); weed control was carried out. The results demonstrated the efficacy of reduced doses of flumioxazin on onion crop in the early stages. The dose of 20 g ha-1 showed use potential in the two experiments for the cvs. Perfecta and Sirius, enabling reductions of 77 to 88% of the commercial dose recommended for onions established with seedling transplanting. The application of flumioxazin in the 2nd leaf reduced commercial productivity and was ineffective in the control of weeds. The application in the 1st + 3rd leaf, despite being an effective control, caused greater phytotoxicity and, therefore, reduced commercial productivity. The best strategy for weed management is 20 g ha-1 flumioxazin applied to onion plants when they reach the true first leaf stage.


Sign in / Sign up

Export Citation Format

Share Document