Environment Affects Cotton and Velvetleaf Response to Pyrithiobac

Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 241-247 ◽  
Author(s):  
M. Angela Harrison ◽  
Robert M. Hayes ◽  
Thomas C. Mueller

Growth chamber experiments evaluated the influence of ambient temperature and soil moisture on cotton and velvetleaf response to pyrithiobac. Additional studies determined the basis for observed plant responses to14C pyrithiobac. Cotton injury from six times the normal dosage was < 20% at 2 wk for all temperatures and soil moistures. Pyrithiobac injured velvetleaf less at lower soil moistures. Both species absorbed more14C-pyrithiobac at 30/28 or 35/33 C than at 25/23 C. Cotton absorbed more herbicide than velvetleaf at all temperatures and soil moistures. Velvetleaf translocated < 16% of absorbed14C out of the treated leaf while cotton translocated < 3% of absorbed material. At warmer temperatures, velvetleaf translocated less14C when soil was dry (–1.0 MPa) than when plants were watered to field capacity (–0.03 MPa). This decreased absorption and translocation may affect pyrithiobac activity on velvetleaf growing in dry soil. Translocation differences did not fully explain whole plant effects. The metabolism difference may account for cotton tolerance.

Weed Science ◽  
1976 ◽  
Vol 24 (3) ◽  
pp. 312-315 ◽  
Author(s):  
M. L. Ketchersid ◽  
M. G. Merkle

The dissipation of sodium azide (NaN3) from soil was significantly affected by pH, soil moisture, and relative humidity (RH). Loss was more rapid from acid than from alkaline soils. Moist soil (20 to 60% field capacity) or air dry soil in a moist environment (100% RH) lost NaN3more rapidly than air dry soil in a dry (0% RH) environment. However, dissipation was decreased when soil moisture exceeded 60% field capacity. Degree of leaching and phytotoxicity of NaN3was not affected by soil pH. Bioassay studies indicated that 10 ppm NaN3in the soil significantly reduced germination and growth in plant species tested. At concentrations of NaN3below 10 ppm, plant germination was often delayed but normal growth occurred after NaN3dissipation.


1989 ◽  
Vol 20 (2) ◽  
pp. 109-122 ◽  
Author(s):  
Lotta Andersson

Some commonly used assumptions about climatically induced soil moisture fluxes within years and between different parts of a region were challenged with the help of a conceptual soil moisture model. The model was optimised against neutron probe measurements from forest and grassland sites. Five 10 yrs and one 105 yrs long climatic records, from the province of Östergötland, situated in south-central Sweden, were used as driving variables. It was concluded that some of the tested assumptions should not be taken for granted. Among these were the beliefs that interannual variations of soil moisture contents can be neglected in the beginning of the hydrological year and that soils usually are filled up to field capacity after the autumn recharge. The calculated climatic induced dryness was estimated to be rather insensitive to the choice of climatic stations within the region. Monthly ranges of soil moisture deficits (1883-1987) were shown to be skewed and it is therefore recommended to use medians and standard deviations in statistical analyses of “normal” ranges of soil moisture deficits.


1951 ◽  
Vol 4 (3) ◽  
pp. 211
Author(s):  
GC Wade

The disease known as white root rot affects raspberries, and to a less extent loganberries, in Victoria. The causal organism is a white, sterile fungus that has not been identified. The disease is favoured by dry soil conditions and high soil temperatures. It spreads externally to the host by means of undifferentiated rhizomorphs; and requires a food base for the establishment of infection. The spread of rhizomorphs through the soil is hindered by high soil moisture content and consequent poor aeration of the soil.


1965 ◽  
Vol 97 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Roy L. Edwards ◽  
Henry T. Epp

Abstract Three different soils – sand, loam and clay – at each of three moisture levels – saturated, intermediate, and dry – were offered to female Melanoplus sanguinipes as oviposition sites. When given a free choice the females preferred moist sand to all other oviposition sites and avoided soil that was completely dry. When no moist soil was available, coarse dry soil was preferred to fine dry soil, but the oviposition rate was reduced. The females would probe and dig at random into any of the soil offered but would withhold their eggs temporarily if the subsurface soil was not moist. Soil water pH appeared to have very little influence on the females' acceptance of an oviposition site as egg pods were deposited in soils with a range of pH from 3.0 to 11.6. It is suggested that although the absence of moisture in the soil may affect the distribution of egg-pods in the microhabitat and may reduce the rate of egg-pod production slightly, the temperature prevailing during the oviposition period is perhaps a more important factor in determining the number of egg-pods deposited.


2009 ◽  
Vol 69 (3) ◽  
pp. 935-942 ◽  
Author(s):  
LA. Pires ◽  
VJM. Cardoso ◽  
CA. Joly ◽  
RR. Rodrigues

The germination response of Ocotea pulchella (Nees) Mez seeds to light, temperature, water level and pulp presence is introduced. The laboratory assays were carried out in germination chambers and thermal-gradient apparatus, whereas the field assays were performed in environments with distinct light, temperature and soil moisture conditions within a permanent parcel of Restinga forest of the Parque Estadual da Ilha do Cardoso, Cananéia, São Paulo. The seeds do not exhibit dormancy, they are non photoblastic, and a loss of viability in dry stored seeds can be related to a decrease in water content of the seed. The presence of the pulp and the flooded substratum influenced negatively the germination of O. pulchella seeds tested in the laboratory. Otherwise, light and temperature probably are not limiting factors of the germination of O. pulchella seeds in the natural environment of Restinga. The optimum temperature range for germination of Ocotea pulchella seeds was 20 to 32 ºC, the minimum or base temperature estimated was 11 ºC and the maximum ranged between 33 and 42 ºC. The isotherms exhibited a sigmoidal pattern well described by the Weibull model in the sub-optimal temperature range. The germinability of O. pulchella seeds in the understorey, both in wet and dry soil, was higher than in gaps. Germination was not affected by fluctuations in soil moisture content in the understorey environment, whereas in gaps, germination was higher in wet soils. Thus, the germination of this species involves the interaction of two or more factors and it cannot be explained by a single factor.


2013 ◽  
Vol 742 ◽  
pp. 272-277
Author(s):  
Liang Shan Feng ◽  
Zhan Xiang Sun ◽  
Jia Ming Zheng

In this study, the results showed that water is the most important factor to affect crop yields and optimum soil moisture is lower under the conditions of peanut-and-millet interplanting. Thus, peanut-and-millet interplanting is generally able to fit most of the semi-arid region. In the interaction of various factors, the coupling effect of water and phosphorus was stronger than the coupling effect of fertilizers, following by the coupling effect of water and nitrogen. Among peanuts factors of water, nitrogen, and multi-factorial interaction of water, nitrogen, and phosphorus, water and nitrogen showed a negative effect, whereas the two-factor interactions had a positive effect. There were some differences between peanut and millet in the need for water and fertilizer, in which peanut required more nitrogen and millet needed slightly higher soil moisture and phosphorus. When other factors were in rich level, both of the optimal value for single factors of water, nitrogen, and phosphorus and the optimal value for two-factor interactions of water-nitrogen, water-phosphorus, and nitrogen-phosphorus, were higher than the optimal value for the interaction of water, nitrogen, and phosphorus. The tiny demand difference on moisture in peanut-millet interplanting could be compromised by configuring a reasonable interplanting population structure and the corresponding demand difference on fertilizer could be resolved by uneven crop planting strips. Under the condition of water-nitrogen-phosphorus interaction, the soil moisture content optimal for peanut accounted for 57.3% of the field capacity, and the related appropriate application rates of nitrogen and phosphorus were 0.98 g/pot (81.18 kg/hm2) and 0.39g/pot (32.18 kg/hm2), respectively. Likewise, the soil moisture content optimal for millet was 59.1% of the field capacity, and the counterpart appropriate application rates of nitrogen and phosphorus were 0.57 g/pot (47.03 kg/hm2) and 0.45g / pot (37.13 kg/hm2), respectively.


2015 ◽  
Vol 10 (4) ◽  
pp. 208 ◽  
Author(s):  
Lorenzo Barbanti ◽  
Ahmad Sher ◽  
Giuseppe Di Girolamo ◽  
Elio Cirillo ◽  
Muhammad Ansar

A better understanding of plant mechanisms in response to drought is a strong premise to achieving high yields while saving unnecessary water. This is especially true in the case of biomass crops for non-food uses (energy, fibre and forage), grown with limited water supply. In this frame, we investigated growth and physiological response of two genotypes of biomass sorghum (<em>Sorghum bicolor</em> (L.) Moench) to contrasting levels of soil moisture in a pot experiment carried out in a greenhouse. Two water regimes (high and low water, corresponding to 70% and 30% field capacity) were applied to JS-2002 and Trudan-8 sorghum genotypes, respectively bred for dry sub-tropical and mild temperate conditions. Two harvests were carried out at 73 and 105 days after seeding. Physiological traits (transpiration, photosynthesis and stomatal conductance) were assessed in four dates during growth. Leaf water potential, its components and relative water content were determined at the two harvests. Low watering curbed plant height and aboveground biomass to a similar extent (ca. 􀀀70%) in both genotypes. JS-2002 exhibited a higher proportion of belowground to aboveground biomass, <em>i.e</em>., a morphology better suited to withstand drought. Despite this, JS-2002 was more affected by low water in terms of physiology: during the growing season, the average ratio in transpiration, photosynthesis and stomatal conductance between droughty and well watered plants was, respectively, 0.82, 0.80 and 0.79 in JS-2002; 1.05, 1.08 and 1.03 in Trudan-8. Hence Trudan-8 evidenced a ca. 20% advantage in the three traits. In addition, Trudan-8 could better exploit abundant moisture (70% field capacity), increasing aboveground biomass and water use efficiency. In both genotypes, drought led to very low levels of leaf water potential and relative water content, still supporting photosynthesis. Hence, both morphological and physiological characteristics of sorghum were involved in plant adaptation to drought, in accordance with previous results. Conversely, the common assumption that genotypes best performing under wet conditions are less suited to face drought was contradicted by the results of the two genotypes in our experiment. This discloses a potential to be further exploited in programmes of biomass utilization for various end uses, although further evidence at greenhouse and field level is needed to corroborate this finding.


Author(s):  
André L. B. de O. Silva ◽  
Regina C. M. Pires ◽  
Rafael V. Ribeiro ◽  
Eduardo C. Machado ◽  
Gabriel C. Blain ◽  
...  

ABSTRACT The present study aimed to evaluate the development, yield and quality of four sugarcane cultivars fertigated by subsurface drip system. The experiment was carried out in Campinas-SP, Brazil, from January 2012 to November 2013, with the cultivars SP79-1011, IACSP94-2101, IACSP94-2094 and IACSP95-5000 subjected to daily irrigations. The irrigations depths were applied to bring soil moisture to field capacity. Soil moisture was monitored using soil moisture probes. Samples were collected along the crop cycle in order to evaluate crop development and yield, at the end of the first and second ratoons. Stalk height showed good correlation for the estimation of crop yield, with R2 equal to or higher than 0.96. The cultivar IACSP95-5000 showed the highest yield in the first ratoon. In the second ratoon the highest yield was observed in IACSP94-2101, followed by IACSP95-5000 and SP79-1011. Considering the yield results associated with the technological analysis, such as soluble solids content and apparent sucrose, the cultivar IACSP95-5000 excelled the others in the cultivation under subsurface drip irrigation.


1987 ◽  
Vol 67 (1) ◽  
pp. 43-54 ◽  
Author(s):  
C. P. MAULÉ ◽  
D. S. CHANASYK

Two simple techniques for separating soil moisture loss into drainage and evapotranspiration for cropped conditions were compared. The study was conducted during May through September 1983 at Ellerslie, Alberta. One technique, the field capacity method, utilized soil tension at − 4 kPa to demarcate the cessation of drainage; the other technique, the gradient method, utilized changes in soil moisture status relative to fallow conditions, to mark the onset of moisture extraction by roots. Both methods estimated similar amounts of drainage and evapotranspiration for the barley plots. Application and thus proper evaluation of these two methods were limited as more than 83% of the total drainage occurred during a 3-wk period in which only the Penman method for estimating evapotranspiration could be used. Key words: Water balance, drainage, evapotranspiration, field capacity method, gradient method


2002 ◽  
Vol 82 (4) ◽  
pp. 855-859 ◽  
Author(s):  
M. L. Leblanc ◽  
D. C. Cloutier ◽  
C. Hamel

A 2-year field study was conducted in corn to determine the influence of rainfall, irrigation and soil water content on common lambsquarters and barnyardgrass emergence. Rainfall or irrigation had no influence on the final weed density and little on the pattern of weed emergence because the soil water content was at or greater than field capacity during the main weed emergence period. Irrigation may hasten the first weed emergence by warming the soil when temperature is limiting for germination. In southwestern Quebec, temperature appears to be the most important factor regulating germination in the spring since soil moisture is normally at field capacity for a long period, in part because of the melting of snow. Key words: Irrigation, weed emergence, soil moisture


Sign in / Sign up

Export Citation Format

Share Document