Investigations into the Growth Suppressing Effect of Nicosulfuron-Treated Johnsongrass (Sorghum halepense) on Corn (Zea mays)

Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 640-644 ◽  
Author(s):  
Nagabhushana G. Gubbiga ◽  
A. Douglas Worsham ◽  
Frederick T. Corbin

Greenhouse and growth chamber experiments were conducted to determine the reasons for stunted growth and yield suppression of corn noticed sometimes in nicosulfuron-treated corn fields infested with heavy population of johnsongrass. Results indicated that in the absence of johnsongrass, nicosulfuron applied broadcast POST at 35 g ai ha−1had no effect on corn. However, growth reduction of corn occurred when nicosulfuron-treated johnsongrass and corn were allowed to share the same rooting medium with their root systems intermingled. The reduction in growth was even greater when corn foliage or the soil surface were also treated with johnsongrass. The extent of growth reduction of corn growing with nicosulfuron-killed johnsongrass depended on weed density and herbicide application rate. Greater growth reductions occurred at four johnsongrass plants per pot compared to two and at a higher application rate of 100 μg nicosulfuron per plant. In general, johnsongrass killed by nicosulfuron appeared to be more phytotoxic to corn than plants killed by paraquat. Nicosulfuron provided excellent control of johnsongrass and improved corn growth by two to three times that of not controlling johnsongrass, but it could not elevate corn growth to the level obtained when johnsongrass was controlled by paraquat or in the absence of interference from johnsongrass.

Weed Science ◽  
1976 ◽  
Vol 24 (5) ◽  
pp. 461-466 ◽  
Author(s):  
R. G. Wilson ◽  
H. H. Cheng

The fate of 2,4-D [(2,4-dichlorophenoxy)acetic acid] in the soil under winter wheat (Triticum aestivumL. ‘Nugaines’) and fallow cropping schemes was studied under the field conditions of eastern Washington in 1973 and 1974 using formulated dimethylamine salt and isooctyl ester of 2,4-D. Soil samples taken 1 hour after herbicide application showed that amine-treated plots retained considerably more applied 2,4-D than ester-treated plots. The rapidity of 2,4-D breakdown decreased gradually with time, and at the end of 6 months, an average of 0.04 ppm of 2,4-D remained in the sampled soil profile regardless of formulation, application rate, or cropping scheme. Loss of 2,4-D from the soil surface in runoff occurred when the plots were irrigated heavily one day after the herbicide application. The herbicide was also leached into the soil profile by both irrigation and natural precipitation. Herbicide concentrations in the sampled portion of the upper soil profile decreased during the summer and then increased slightly in the fall.


2021 ◽  
pp. 1-21
Author(s):  
Jose H. S. de Sanctis ◽  
Amit J. Jhala

Abstract Velvetleaf is an economically important weed in agronomic crops in Nebraska and the United States. Dicamba applied alone usually does not provide complete velvetleaf control, particularly when velvetleaf is greater than 15 cm tall. The objectives of this experiment were to evaluate the interaction of dicamba, fluthiacet-methyl, and glyphosate applied alone or in a mixture in two- or three-way combinations for velvetleaf control in dicamba/glyphosate-resistant (DGR) soybean and to evaluate whether velvetleaf height (≤ 12 cm or ≤ 20 cm) at the time of herbicide application influences herbicide efficacy, velvetleaf density, biomass, and soybean yield. Field experiments were conducted near Clay Center, Nebraska in 2019 and 2020. The experiment was arranged in a split-plot with velvetleaf height (≤ 12 cm or ≤ 20 cm) as the main plot treatment and herbicides as sub-plot treatment. Fluthiacet provided ≥ 94% velvetleaf control 28 d after treatment (DAT) and ≥ 96% biomass reduction regardless of application rate or velvetleaf height. Velvetleaf control was 31% to 74% at 28 DAT when dicamba or glyphosate was applied alone to velvetleaf ≤ 20 cm tall compared with 47% to 100% control applied to ≤ 12 cm tall plants. Dicamba applied alone to ≤ 20 cm tall velvetleaf provided < 75% control and < 87% biomass reduction 28 DAT compared with ≥ 90% control with dicamba at 560 g ae ha−1 + fluthiacet at 7.2 g ai ha−1 or glyphosate at 1,260 g ae ha−1. Dicmaba at 280 g ae ha−1 + glyphosate at 630 g ae ha−1 applied to ≤ 20 cm tall velvetleaf resulted in 86% control 28 DAT compared with the expected 99% control. The interaction of dicamba + fluthiacet + glyphosate was additive for velvetleaf control and biomass reduction regardless of application rate and velvetleaf height.


2018 ◽  
Vol 40 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Lais Tessari Perboni ◽  
Dirceu Agostinetto ◽  
Leandro Vargas ◽  
Joanei Cechin ◽  
Renan Ricardo Zandoná ◽  
...  

Abstract: The goals of this study were to evaluate herbicide application rates at different timings for preharvest desiccation of wheat (Trial 1), as well as to evaluate the effect of the timing of herbicide desiccation at preharvest and harvest timing (Trial 2) on yield, germination, and herbicide residue in wheat seed. In Trial 1, treatments consisted of two application rates of glufosinate, glyphosate, paraquat, or paraquat+diuron and a control without application; application time periods were in the milk grain to early dough stage, soft dough to hard dough stage, and hard dough stage. In Trial 2, treatments consisted of different application time periods (milk grain to early dough stage, and soft dough to hard dough stage), different herbicides (glufosinate, 2,4-D+glyphosate, and untreated control), and different harvest times (5, 10 and 15 days after herbicide application). One thousand seeds weight, yield, first and final germination count, and herbicide residue on seeds were evaluated. Preharvest desiccation with paraquat, glufosinate, and 2,4-D+glyphosate at the milk grain to early dough stage reduces wheat yield. Regardless of the herbicide and application rate, application in the milk grain to early dough stage and soft dough to hard dough stage provides greater germination of wheat seeds, except at the lower dose of paraquat. Systemic herbicides accumulate more in wheat seeds.


2013 ◽  
Vol 31 (1) ◽  
pp. 165-174 ◽  
Author(s):  
N.M Correia ◽  
E.H Camilo ◽  
E.A Santos

The aim of this study was to assess the capacity of sulfentrazone applied in pre-emergence in controlling Ipomoea hederifolia and Ipomoea quamoclit as a function of the time interval between herbicide application and the occurrence of rain, and the presence of sugarcane straw on the soil surface. Two greenhouse experiments and one field experiment were conducted. For the greenhouse experiments, the study included three doses of sulfentrazone applied by spraying 0, 0.6, and 0.9 kg ha-1, two amounts of straw on the soil (0 and 10 t ha-1), and five time intervals between the application of herbicide and rain simulation (0, 20, 40, 60, and 90 days). In the field experiment, five herbicide treatments (sulfentrazone at 0.6 and 0.9 kg ha-1, sulfentrazone + hexazinone at 0.6 + 0.25 kg ha-1, amicarbazone at 1.4 kg ha-1, and imazapic at 0.147 kg ha-1) and two controls with no herbicide were studied. Management conditions with or without sugarcane straw on the soil were also assessed. From the greenhouse experiments, sulfentrazone application at 0.6 kg ha-1 was found to provide for the efficient control of I. hederifolia and I. quamoclit in a dry environment, with up to 90 days between herbicide application and rain simulation. After herbicide application, 20 mm of simulated rain was enough to leach sulfentrazone from the straw to the soil, as the biological effects observed in I. hederifolia and I. quamoclit remained unaffected. Under field conditions, either with or without sugarcane straw left on the soil, sulfentrazone alone (0.6 or 0.9 kg ha-1) or sulfentrazone combined with hexazinone (0.6 + 0.25 kg ha-1) was effective in the control of I. hederifolia and I. quamoclit, exhibiting similar or better control than amicarbazone (1.4 kg ha-1) and imazapic (0.147 kg ha-1).


2002 ◽  
Vol 82 (3) ◽  
pp. 599-610 ◽  
Author(s):  
L. M. Dosdall ◽  
R. -C. Yang ◽  
P. M. Conway

While the importance of sulfur nutrition for the development of healthy stands of canola is well documented, the role of sulfur in the management of insect pest infestations has not previously been investigated in this crop. Field experiments were conducted at three sites in central Alberta in 1997 and 1998 to determine the influence of sulfur and sulfate applications on infestations of root maggots (Delia spp.) (Diptera: Anthomyiidae) in canola (Brassica rapa L.). Different formulations (granules, powder, prills, and sprays), application methods (either drilled in with the seed or top-dressed on the soil surface), and application rates were evaluated. To assess the degree of root maggot infestation, oviposition throughout the season and damage to taproots at the end of the season were monitored. Sulfur contents were analyzed from leaf samples collected mid-season and seed yields were measured from all treatment plots. Root maggot responses to the different sulfur treatments and application methods varied among years and sites, indicating that environmental factors have great importance in determining infestation levels by these pests, and the oxidation rate of elemental sulfur in soil. Sulfur formulation and application rate had significant effects on root maggot egg deposition and root damage for some sites and years, but even at high rates of application (112 kg ha-1) reductions in infestation levels were not substantial relative to the controls. While sulfur additions alone will not greatly reduce root maggot infestation levels in canola, growers should employ adequate sulfur nutrition for optimum crop health to enable plants to better compensate for damage by these pests. Key words: Brassica rapa, Delia radicum, Delia floralis, elemental sulfur, sulfate, canola


Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 683-687 ◽  
Author(s):  
Richard W. Jones ◽  
W. Thomas Lanini ◽  
Joseph G. Hancock

Gliocladium virens, when grown on peat moss amended with sucrose and ammonium nitrate and then applied to soil, resulted in root necrosis. Herbicidal activity was correlated with fungal production of the phytotoxin viridiol. Viridiol had a wide spectrum of activity; it was particularly effective against annual composite species but was less effective in monocot control. Emergence of most weeds was reduced >90% at application rates of 8.7% (of total volume) or less. Treated seedling dry weights were drastically reduced. Applications of 4.5% reduced root and shoot weight of redroot pigweed by 93 and 98%, respectively. Crops were affected at higher treatment levels; however, the toxicity was readily avoided by applying the mycoherbicide out of the root zone of the crop, instead applying it between the seed and the soil surface. Viridiol production, which confers herbicidal activity, was detected 3 days after incorporation of the fungus-peat mixture. Viridiol production peaked on days 5 and 6 at approximately 25 μg viridiol/100 ml soil, based upon an application rate of 11%, then declined to undetectable levels by the end of 2 weeks.


2016 ◽  
Vol 31 (3-4) ◽  
pp. 121-128 ◽  
Author(s):  
Ljiljana Santric ◽  
Ljiljana Radivojevic ◽  
Jelena Gajic-Umiljendic ◽  
Marija Saric-Krsmanovic ◽  
Rada Djurovic-Pejcev

This study was conducted under laboratory conditions to investigate the effects of herbicides (nicosulfuron, metribuzin and glyphosate) on the number of actinomycetes in soil and growth of several isolates of actinomycetes in vitro. The lowest tested concentrations equalled the recommended rates (1X), while the other three were five-fold (5X), ten-fold (10X) and fifty-fold (50X). Samples were collected for analysis 3, 7, 14, 30 and 45 days after herbicide application. Treatment with the two highest concentrations of herbicides (10X and 50X) caused a significant inhibition of the number of actinomycetes in soil and growth of the isolates in vitro. The obtained data indicated that the effect depended on the type of herbicide, application rate, duration of activity and actinomycetes isolate. The study suggests that herbicide applications in soil caused transient effects on the growth and development on actinomycetes community in soil.


2012 ◽  
Vol 30 (4) ◽  
pp. 861-870 ◽  
Author(s):  
N.M. Correia ◽  
F.J. Perussi ◽  
L.J.P. Gomes

The aim of this study was to assess the efficacy of S-metolachlor applied in pre-emergence conditions for the control of Brachiaria decumbens, Digitaria horizontalis, and Panicum maximum in sugar cane mechanically harvested without previous burning of the crop (green harvest) with the crop residue either left or not on the soil surface. The experiments were established in the field according to a randomized complete block design with four repetitions in a 7 x 2 split-plot scheme. In the plots, five herbicide treatments were studied (S-metolachlor at 1.44, 1.92, and 2.40 kg ha-1, clomazone at 1.20 kg ha-1, and isoxaflutole at 0.188 kg ha-1), and two control treatments with no herbicide application. In the subplots, the presence or absence of sugar cane crop residue on the soil surface was evaluated. S-metolachlor efficacy was not hampered by either 14 or 20 t ha-1 of sugar cane crop residue on the soil surface. When sugar cane crop residue was covering the soil surface, S-metolachlor at a rate of 1.44 kg ha-1 resulted in weed control similar at their larger rates, where as without the presence of crop residue, S-metolachlor controlled B. decumbens, D. horizontalis, and P. maximum at the rates of 1.92, 1.44, and 1.92 kg ha-1, respectively. The herbicides clomazone and isoxaflutole were effective for the studied species, independently of the crop residue covering the soil surface. S-metolachlor caused no visible injury symptoms to the sugar cane plant. Clomazone and isoxaflutole caused visible injuries to the sugar cane plant. None of the herbicides negatively affected the number of viable culms m² or the culm height and diameter.


2018 ◽  
Vol 45 (3) ◽  
pp. 249
Author(s):  
Solikin ,

Dioscorea is potentially used as staple food to support food security. The research was aimed to determine the effect of stake length and time of  stem twining  on  the growth of Dioscorea sansibarensis Pax. The experiment was conducted  in  Purwodadi Botanic Garden from December 2014 until May 2015 using split plot randomized block design consisted of two factors, i.e. the stake length and time of stem twining. The stake length was the main plot consisted of 150 cm, 100 cm and 50 cm above soil surface and without stake (control). The time of stem twining as subplots, i.e. stem twined early, twined at the time of 4 leaves stage, and twined at 8 leaves stage. Each combination of the treatments was replicated three times. The results showed that there was significant effect on the stake length  and the time of stem twining treatments on the plant growth and yield. The stake  length of 150 cm treatment produced the highest fresh tuber and total plant dry weight, i.e., 257.24 g and 132.77 g per plant, respectively. On the contrary, the plant without stake produced the lowest fresh tuber and  total dry weight of plant, i.e., 112.10 g and 48.65 g per plant, respectively.<br /><br />Keywords: biomass,leaf area, photosyntesis, tuber weight


Sign in / Sign up

Export Citation Format

Share Document