scholarly journals CCD Time-Series Photometry of Astronomical Sources

1995 ◽  
Vol 167 ◽  
pp. 167-172
Author(s):  
Steve B. Howell

CCDs are essentially the only instrument available today for photometry at most observatories; they are also becoming more readily available to amateurs as well. Thus, obtaining good photometric data with these two-dimensional devices is something we all need to understand. The history of and recent developments in CCD time-series photometry will be reviewed with some comments on future directions.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 185
Author(s):  
Adrian S. Monthony ◽  
Serena R. Page ◽  
Mohsen Hesami ◽  
Andrew Maxwell P. Jones

The recent legalization of Cannabis sativa L. in many regions has revealed a need for effective propagation and biotechnologies for the species. Micropropagation affords researchers and producers methods to rapidly propagate insect-/disease-/virus-free clonal plants and store germplasm and forms the basis for other biotechnologies. Despite this need, research in the area is limited due to the long history of prohibitions and restrictions. Existing literature has multiple limitations: many publications use hemp as a proxy for drug-type Cannabis when it is well established that there is significant genotype specificity; studies using drug-type cultivars are predominantly optimized using a single cultivar; most protocols have not been replicated by independent groups, and some attempts demonstrate a lack of reproducibility across genotypes. Due to culture decline and other problems, the multiplication phase of micropropagation (Stage 2) has not been fully developed in many reports. This review will provide a brief background on the history and botany of Cannabis as well as a comprehensive and critical summary of Cannabis tissue culture. Special attention will be paid to current challenges faced by researchers, the limitations of existing Cannabis micropropagation studies, and recent developments and future directions of Cannabis tissue culture technologies.


2012 ◽  
Vol 1 (1) ◽  
pp. 102-124 ◽  
Author(s):  
Monika S. Schmid ◽  
Teodora Mehotcheva

The present contribution discusses recent developments and future directions in the attrition of instructed foreign languages, arguing for a distinction between this type of attrition and attrition involving second languages acquired implicitly in an immersion setting. An overview of the history of research in the field and the most prominent findings is provided, followed by a discussion of theoretical models and methodologically problematic issues. We conclude by outlining some future directions for the field.


Author(s):  
Li Deng

In this invited paper, my overview material on the same topic as presented in the plenary overview session of APSIPA-2011 and the tutorial material presented in the same conference [1] are expanded and updated to include more recent developments in deep learning. The previous and the updated materials cover both theory and applications, and analyze its future directions. The goal of this tutorial survey is to introduce the emerging area of deep learning or hierarchical learning to the APSIPA community. Deep learning refers to a class of machine learning techniques, developed largely since 2006, where many stages of non-linear information processing in hierarchical architectures are exploited for pattern classification and for feature learning. In the more recent literature, it is also connected to representation learning, which involves a hierarchy of features or concepts where higher-level concepts are defined from lower-level ones and where the same lower-level concepts help to define higher-level ones. In this tutorial survey, a brief history of deep learning research is discussed first. Then, a classificatory scheme is developed to analyze and summarize major work reported in the recent deep learning literature. Using this scheme, I provide a taxonomy-oriented survey on the existing deep architectures and algorithms in the literature, and categorize them into three classes: generative, discriminative, and hybrid. Three representative deep architectures – deep autoencoders, deep stacking networks with their generalization to the temporal domain (recurrent networks), and deep neural networks (pretrained with deep belief networks) – one in each of the three classes, are presented in more detail. Next, selected applications of deep learning are reviewed in broad areas of signal and information processing including audio/speech, image/vision, multimodality, language modeling, natural language processing, and information retrieval. Finally, future directions of deep learning are discussed and analyzed.


2020 ◽  
Vol 48 (6) ◽  
pp. 2457-2466
Author(s):  
Charles Eldrid ◽  
Konstantinos Thalassinos

Ion Mobility (IM) coupled to mass spectrometry (MS) is a useful tool for separating species of interest out of small quantities of heterogenous mixtures via a combination of m/z and molecular shape. While tandem MS instruments are common, instruments which employ tandem IM are less so with the first commercial IM–MS instrument capable of multiple IM selection rounds being released in 2019. Here we explore the history of tandem IM instruments, recent developments, the applications to biological systems and expected future directions.


Author(s):  
Justin M. Drerup ◽  
Curtis A. Clark ◽  
Tyler J. Curiel

Ovarian cancer (OC) is an immunogenic tumor and among the first where measures of anti-tumor immunity correlated with improved survival. Thus, immunotherapy could be a viable OC treatment modality. Nonetheless, clinical OC immunotherapy trials have demonstrated only modest successes at best, and there is currently no Food and Drug Administration (FDA)approved OC immune therapy despite recent successes in other carcinomas and lymphomas and FDA-approved immunotherapy agents for them. New data suggest specific impediments to effective de novo and treatment-induced anti-OC immunity and support the concept that effective, tolerable OC immunotherapy could be developed based on these newer insights. This chapter reviews the history of OC immunotherapy, highlights important discoveries in OC-related immune dysfunction, covers promising recent developments, highlights newer and ongoing clinical trials, and speculates on future directions that could lead to improved OC immunotherapy approaches.


1998 ◽  
Vol 51 (4) ◽  
pp. 609 ◽  
Author(s):  
Maarten Vos

With the advent of two-dimensional electron detection, electron momentum spectroscopy of solids evolved from a spectroscopy in its infancy to a new, viable technique, looking for its place in solid state physics. Here I give an overview of the first sets of experiments, the evolution of the interpretation of these experiments and possible future directions.


Marketing ZFP ◽  
2010 ◽  
Vol 32 (JRM 1) ◽  
pp. 24-29
Author(s):  
Marnik G. Dekimpe ◽  
Dominique M. Hanssens

2020 ◽  
Vol 48 (3-4) ◽  
pp. 13-26
Author(s):  
Brandon W. Hawk

Literature written in England between about 500 and 1100 CE attests to a wide range of traditions, although it is clear that Christian sources were the most influential. Biblical apocrypha feature prominently across this corpus of literature, as early English authors clearly relied on a range of extra-biblical texts and traditions related to works under the umbrella of what have been called “Old Testament Pseudepigrapha” and “New Testament/Christian Apocrypha." While scholars of pseudepigrapha and apocrypha have long trained their eyes upon literature from the first few centuries of early Judaism and early Christianity, the medieval period has much to offer. This article presents a survey of significant developments and key threads in the history of scholarship on apocrypha in early medieval England. My purpose is not to offer a comprehensive bibliography, but to highlight major studies that have focused on the transmission of specific apocrypha, contributed to knowledge about medieval uses of apocrypha, and shaped the field from the nineteenth century up to the present. Bringing together major publications on the subject presents a striking picture of the state of the field as well as future directions.


2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


Sign in / Sign up

Export Citation Format

Share Document