scholarly journals Techniques for observing stellar oscillations

1988 ◽  
Vol 123 ◽  
pp. 497-511
Author(s):  
J. W. Harvey

Although stellar oscillations have been observed for more than two centuries, the demands of asteroseismology require new observations of substantially higher precision. Two major techniques are reviewed: Doppler spectroscopy and photometry. Fundamental limitations are described using the sun as a representative stellar target. The current state of the art is limited by lack of light in the case of Doppler methods and by atmospheric noise in the case of photometry. Prospects for improvements in both of these techniques are good and we may expect someday to be able to detect solar-like oscillations of stars as faint as 10th magnitude.

2020 ◽  
Vol 10 ◽  
pp. 7 ◽  
Author(s):  
Eoin P. Carley ◽  
Carla Baldovin ◽  
Pieter Benthem ◽  
Mario M. Bisi ◽  
Richard A. Fallows ◽  
...  

The low frequency array (LOFAR) is a phased array interferometer currently consisting of 13 international stations across Europe and 38 stations surrounding a central hub in the Netherlands. The instrument operates in the frequency range of ~10–240 MHz and is used for a variety of astrophysical science cases. While it is not heliophysics or space weather dedicated, a new project entitled “LOFAR for Space Weather” (LOFAR4SW) aims at designing a system upgrade to allow the entire array to observe the Sun, heliosphere, Earth’s ionosphere, and Jupiter throughout its observing window. This will allow the instrument to operate as a space weather observing platform, facilitating both space weather science and operations. Part of this design study aims to survey the existing space weather infrastructure operating at radio frequencies and show how LOFAR4SW can advance the current state-of-the-art in this field. In this paper, we survey radio instrumentation and facilities that currently operate in space weather science and/or operations, including instruments involved in solar, heliospheric, and ionospheric studies. We furthermore include an overview of the major space weather service providers in operation today and the current state-of-the-art in the radio data they use and provide routinely. The aim is to compare LOFAR4SW to the existing radio research infrastructure in space weather and show how it may advance both space weather science and operations in the radio domain in the near future.


2021 ◽  
Author(s):  
Ioannis A. Daglis ◽  
Loren C. Chang ◽  
Sergio Dasso ◽  
Nat Gopalswamy ◽  
Olga V. Khabarova ◽  
...  

Abstract. In October 2017, the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) Bureau established a committee for the design of SCOSTEP's Next Scientific Program (NSP). The NSP committee members and authors of this paper, decided from the very beginning of their deliberations that the predictability of the Sun-Earth System from a few hours to centuries is a timely scientific topic, combining the interests of different topical communities in a relevant way. Accordingly, the NSP was christened PRESTO – Predictability of the variable Solar-Terrestrial coupling. This paper presents a detailed account of PRESTO; we show the key milestones of the PRESTO roadmap for the next five years, review the current state of the art and discuss future studies required for the most effective development of solar-terrestrial physics.


2021 ◽  
Vol 39 (6) ◽  
pp. 1013-1035
Author(s):  
Ioannis A. Daglis ◽  
Loren C. Chang ◽  
Sergio Dasso ◽  
Nat Gopalswamy ◽  
Olga V. Khabarova ◽  
...  

Abstract. In October 2017, the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) Bureau established a committee for the design of SCOSTEP's Next Scientific Programme (NSP). The NSP committee members and authors of this paper decided from the very beginning of their deliberations that the predictability of the Sun–Earth System from a few hours to centuries is a timely scientific topic, combining the interests of different topical communities in a relevant way. Accordingly, the NSP was christened PRESTO – PREdictability of the variable Solar–Terrestrial cOupling. This paper presents a detailed account of PRESTO; we show the key milestones of the PRESTO roadmap for the next 5 years, review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


1976 ◽  
Vol 21 (7) ◽  
pp. 497-498
Author(s):  
STANLEY GRAND

10.37236/24 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
A. Di Bucchianico ◽  
D. Loeb

We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of “magic rules” for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly.


2009 ◽  
Vol 5 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Osvaldo Santos-Filho ◽  
Anton Hopfinger ◽  
Artem Cherkasov ◽  
Ricardo de Alencastro

Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Sign in / Sign up

Export Citation Format

Share Document