scholarly journals Polar Cap Accretion onto Magnetized Neutron Stars: An Analytic Solution

1987 ◽  
Vol 125 ◽  
pp. 245-245
Author(s):  
Jonathan Arons ◽  
Richard I. Klein

This abstract should be read in conjunction with the papers by Arons and by Klein and Arons in these proceedings. In the context of the accretion models described there, one can find an analytic solution for the flow down the polar field lines if a number of simplifying assumptions are made. These are (1) steady flow in the co–rotating frame; (2) radiation pressure large compared to gas pressure; (3) pure scattering for the Rosseland opacity, with the magnetic corrections set equal to constants instead of using the actual functions of temperature; (4) diffusion flux of radiative energy proportional to the gradient of the energy density alone, instead of the correct sum of terms proportional to the photon energy density and the number density gradients; and (5) below a radiative shock, subsonic flow in approximate hydrostatic equilibrium. We assumed dipole geometry, and also assume the mass flux is independent of distance from the magnetic axis. The essential trick is to use (1), (2) and (5) to write the advective contribution to the radiation transfer equation as Mg/area = rate at which gravity does work on a fluid element, and use (3) and (4) to write the nonlinear diffusion flux as the ratio of gradients in the energy density. Then the multidimensional diffusion equation can be cast in a separable, linear form by using the logarithmic radial gradient of the energy density as the basic variable (see also Kirk, J., 1985, Astron. and Astrophys., 142, 430). The result is exponential stratification of the energy density, velocity and mass density along B with scale height R*[L(EDeff)/4Lco-p]; the effective Eddington luminosity is discussed by Arons, these proceedings. This result can be understood as the result of almost exact balance between upward diffusion and downward advection of photons in the optically thick medium. The same fluid quantities are stratified in a Gaussian manner across B, with angular half width at half maximum Δθ = [L(EDeff)/Lcap](r/R*)3/2. These distributions agree well with more sophisticated computational results, during times when the flow is steady. When used as a basis for calculations of the radiative entropy, the calculated emergent spectra are not dissimilar to the spectra of high luminosity, accretion powered pulsars.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2667
Author(s):  
Ander Vieira ◽  
Jon Arrue ◽  
Begoña García-Ramiro ◽  
Felipe Jiménez ◽  
María Asunción Illarramendi ◽  
...  

In this paper, useful models that enable time-efficient computational analyses of the performance of luminescent solar concentrators (LSCs) are developed and thoroughly described. These LSCs are based on polymer optical fibers codoped with organic dyes and/or europium chelates. The interest in such dopants lies in the availability of new dyes with higher quantum yields and in the photostability and suitable absorption and emission bands of europium chelates. Time-efficiency without compromising accuracy is especially important for the simulation of europium chelates, in which non-radiative energy transfers from the absorbing ligands to the europium ion and vice versa are so fast that the discretization in time, in the absence of some simplifying assumptions, would have to be very fine. Some available experimental results are also included for the sake of comparison.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Shiraz Khan ◽  
S. A. Mardan ◽  
M. A. Rehman

AbstractA framework is developed for generalized polytropes with the help of complexity factor introduced by Herrera (Phy Rev D 97:044010, 2018), by using the spherical symmetry with anisotropic inner fluid distribution. For this purpose generalized polytropic equation of state will be used, having two cases (i) for mass density $$(\mu _{o})$$(μo), (ii) for energy density $$(\mu )$$(μ), each case leads to a system of differential equations. These systems of differential equations involve two equations with three unknowns and they will be made consistent by using the complexity factor. The analysis of the solutions of these systems will be carried out graphically by using different parametric values involved in the systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Tom F. Neiser

When the Large Hadron Collider resumes operations in 2021, several experiments will directly measure the motion of antihydrogen in free fall for the first time. Our current understanding of the universe is not yet fully prepared for the possibility that antimatter has negative gravitational mass. This paper proposes a model of cosmology, where the state of high energy density of the big bang is created by the collapse of an antineutrino star that has exceeded its Chandrasekhar limit. To allow the first neutrino stars and antineutrino stars to form naturally from an initial quantum vacuum state, it helps to assume that antimatter has negative gravitational mass. This assumption may also be helpful to identify dark energy. The degenerate remnant of an antineutrino star can today have an average mass density that is similar to the dark energy density of the ΛCDM model. When in hydrostatic equilibrium, this antineutrino star remnant can emit isothermal cosmic microwave background radiation and accelerate matter radially. This model and the ΛCDM model are in similar quantitative agreement with supernova distance measurements. Therefore, this model is useful as a purely academic exercise and as preparation for possible future discoveries.


2020 ◽  
Author(s):  
Brian Wilcox ◽  
Peter Chi ◽  
Kazue Takahashi ◽  
Richard Denton

<p>Previous studies have demonstrated that the field line resonance (FLR) frequencies detected on closed magnetospheric field lines can be used to estimate the plasma mass density in the inner magnetosphere. This method, also known as “normal-mode magnetoseismology,” can act as a virtual instrument that turns spacecraft measurements of magnetic and/or electric field into plasma mass density, which is a fundamental physical quantity that is difficult to measure directly but important to investigations involving the MHD timescales, reconnection rates, or instability/wave growth rates.</p><p>In this study, we use normal-mode magnetoseismology to help investigate the characteristics of the oxygen torus, which is the narrow region of enhanced O+ density in the vicinity of the plasmapause that may form during the storm recovery phase. The formation of the oxygen torus is still an outstanding question, and the geomagnetic mass spectrometer effect and the direct ring current heating of the ionosphere have been proposed as two possible causes. We identify the location and timing of oxygen torus occurrence by examining the FLR-inferred plasma mass densities in Magnetospheric Multiscale (MMS) and Van Allen Probes (RBSP) observations and compare them with the charge densities derived from the upper hybrid resonance frequency detected by the respective plasma wave experiments on the spacecraft. We find that, while MMS and RBSP could both observe clear enhancements of heavy ions during a magnetic storm, the degree and the width of O+ enhancement can vary with location. The timing of oxygen torus occurrence may differ from storm to storm. In RBSP measurements, we also compare the bulk densities with the partial densities of low-energy ions detected by the HOPE instrument. While the average ion mass can be greater for 30 eV – 1 keV ions than that for the bulk plasma in the oxygen torus, it is evident that the majority of the ions in the oxygen torus are below 30 eV, confirming the need to examine the bulk mass and charge densities through electromagnetic sounding methods.</p>


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3426-3436 ◽  
Author(s):  
MARTIN L. PERL

Over the last decade, astronomical observations show that the acceleration of the expansion of the universe is greater than expected from our understanding of conventional general relativity, the mass density of the visible universe, the size of the visible universe and other astronomical measurements. The additional expansion has been attributed to a variety of phenomenon that have been given the general name of dark energy. Dark energy in the universe seems to comprise a majority of the energy in the visible universe amounting to about three times the total mass energy. But locally the dark energy density is very small. However it is not zero. In this paper I describe the work of others and myself on the question of whether dark energy density can be directly detected. This is a work-in-progress and I have no answer at present.


2007 ◽  
Vol 16 (10) ◽  
pp. 1633-1640 ◽  
Author(s):  
YONGLI PING ◽  
LIXIN XU ◽  
CHENGWU ZHANG ◽  
HONGYA LIU

We discuss the exact solutions of brane universes and the results indicate that the Friedmann equations on the branes are modified with a new density term. Then, we assume the new term as the density of dark energy. Using Wetterich's parametrization equation of state (EOS) of dark energy, we obtain that the new term varies with the redshift z. Finally, the evolutions of the mass density parameter Ω2, dark energy density parameter Ωx and deceleration parameter q2 are studied.


1979 ◽  
Vol 32 (2) ◽  
pp. 49 ◽  
Author(s):  
VV Zheleznyakov ◽  
VE Shaposhnikov

The reabsorption of curvature radiation, i.e. radiation from relativistic electrons moving along curved magnetic field lines, is discussed. The optical depth for the ray path is calculated by use of the Einstein coefficients. It is shown that the optical depth becomes negative (maser effect) if transitions between Landau levels are absent. However, maser action is ineffective if the energy density of the relativistic particles is less than that of the magnetic field. For pulsar radio emission the magnetic energy density is assumed to exceed the particle energy density, so the observed emission cannot be coherent curvature radiation.


2010 ◽  
Vol 28 (11) ◽  
pp. 2059-2069 ◽  
Author(s):  
J. Krall ◽  
J. D. Huba ◽  
S. L. Ossakow ◽  
G. Joyce

Abstract. Behaviour of equatorial spread F (ESF) fossil plumes, i.e., ESF plumes that have stopped rising, is examined using the NRL SAMI3/ESF three-dimensional simulation code. We find that fossil bubbles, plasma density depletions associated with fossil plumes, can persist as high-altitude equatorial depletions even while being "blown" by zonal winds. Corresponding airglow-proxy images of fossil plumes, plots of electron density versus longitude and latitude at a constant altitude of 288 km, are shown to partially "fill in" in most cases, beginning with the highest altitude field lines within the plume. Specifically, field lines upon which the E field has fallen entirely to zero are affected and only the low altitude (≤600 km) portion if each field line fills in. This suggests that it should be possible to observe a bubble at high altitude on a field line for which the corresponding airglow image no longer shows a depletion. In all cases ESF plumes stop rising when the flux-tube-integrated ion mass density inside the upper edge of the bubble is equal to that of the nearby background, further supporting the result of Krall et al. (2010b).


Author(s):  
U. V. S. Seshavatharam ◽  
S. Lakshminarayana

With reference to Planck scale Hubble parameter, super luminal expansion speeds, super luminal rotation speeds and Mach’s principle, we review the current cosmological observations. With our revised assumptions, it is possible to show that, at H0 =70 km/sec/Mpc, current cosmic temperature, age, radius, mass, mass density and rotational kinetic energy are 2.721 K, 4.41 x 1017 sec, 90 billion light years, 1.14654 x 1054 kg, 0.0482 times the current critical density and 0.6667 times the current critical energy density respectively. Based on the estimated current mass density and current rotational kinetic energy density, current cosmic dark matter density can be shown to be 0.2851 times the current critical density. Initial and current expansion speeds are 3 x 108 m/sec and 3.56 x 109 m/sec respectively. Proceeding further, we developed two interesting methods for understanding cosmic scale factor with reference to a temperature of 3000 K, redshift of 1100 and age of 3,69,000 years. Finally we would like to suggest that, with increasing cosmic age and increasing cosmic expansion speed, current universe is expanding with a speed of 11.885c. Magnitude of the future cosmic expansion speed depends on the magnitude of the future Hubble parameter. By knowing the time to time future cosmic temperatures, corresponding future Hubble parameters can be estimated and corresponding future cosmic expansion speeds can also be estimated.Proceeding further, a unified model of evolving quantum cosmology can be developed.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-5
Author(s):  
Saddam Husain Dhobi* ◽  
Kishori Yadav ◽  
Bhishma Karki

The mass density and energy density of visible photon is calculated as and , respectively. Moreover it is also observed that mass density and energy density of photon depend upon photons mass, wavelength, volume and energy. This is clear from figure 1, figure 2 and literatures. Therefore the mass density and energy density of photon varies with masses of photon, wavelength, volume, etc.


Sign in / Sign up

Export Citation Format

Share Document