Reuse in the brain and elsewhere

2010 ◽  
Vol 33 (4) ◽  
pp. 282-283 ◽  
Author(s):  
Björn Lindblom

AbstractChemistry, genetics, physics, and linguistics all present instances of reuse. I use the example of how behavioral constraints may have contributed to the emergence of phonemic reuse. Arising from specific facts about speech production, perception, and learning, such constraints suggest that combinatorial reuse is domain-specific. This implies that it would be more prudent to view instances of neural reuse not as reflecting a “fundamental organizational principle,” but as a fortuitous set of converging phenomena.

2021 ◽  
pp. 24-36
Author(s):  
John Zerilli

“Neural reuse” refers to the exaptation of established and relatively fixed neural circuits without loss of original function/use. Reuse arises over the course of normal development and evolution. The evidence of this phenomenon speaks most loudly against the idea of strict domain-specificity. It seems that no area of the brain is exempt from redeployment, with areas of the brain traditionally considered to be among the most domain-specific (such as sensory areas) also contributing their computational/structural resources to other domains, including those involving language. The evidence supporting reuse takes many forms, among them evolutionary and developmental considerations, computational considerations, and the neuroimaging and biobehavioral literature.


2010 ◽  
Vol 33 (4) ◽  
pp. 245-266 ◽  
Author(s):  
Michael L. Anderson

AbstractAn emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neuralplasticity(which is, after all, a kind of reuse) in brain organization along the following lines: According to neural reuse, circuits can continue to acquire new uses after an initial or original function is established; the acquisition of new uses need not involve unusual circumstances such as injury or loss of established function; and the acquisition of a new use need not involve (much) local change to circuit structure (e.g., it might involve only the establishment of functional connections to new neural partners). Thus, neural reuse theories offer a distinct perspective on several topics of general interest, such as: the evolution and development of the brain, including (for instance) the evolutionary-developmental pathway supporting primate tool use and human language; the degree of modularity in brain organization; the degree of localization of cognitive function; and the cortical parcellation problem and the prospects (and proper methods to employ) for function to structure mapping. The idea also has some practical implications in the areas of rehabilitative medicine and machine interface design.


1995 ◽  
Vol 7 (3) ◽  
pp. 396-407 ◽  
Author(s):  
Argye E. Hillis ◽  
Alfonso Caramazza

We report the performance of a patient who, as a consequence of left frontal and temporoparietal strokes, makes far more errors on nouns than on verbs in spoken output tasks, but makes far more errors on verbs than on nouns in written input tasks. This double dissociation within a single patient with respect to grammatical category provides evidence for the hypothesis that phonological and orthographic representations of nouns and verbs are processed by independent neural mechanisms. Furthermore, the opposite dissociation in the verbal output modality, an advantage for nouns over verbs in spoken tasks, by a different patient using the same stimuli has also been reported (Caramazza & Hillis, 1991). This double dissociation across patients on the same task indicates that results cannot be ascribed to "greater difficulty" with one type of stimulus, and provides further evidence for the view that grammatical category information is an important organizational principle of lexical knowledge in the brain.


2018 ◽  
Vol 119 (6) ◽  
pp. 2256-2264 ◽  
Author(s):  
Zarrar Shehzad ◽  
Gregory McCarthy

Whether category information is discretely localized or represented widely in the brain remains a contentious issue. Initial functional MRI studies supported the localizationist perspective that category information is represented in discrete brain regions. More recent fMRI studies using machine learning pattern classification techniques provide evidence for widespread distributed representations. However, these latter studies have not typically accounted for shared information. Here, we find strong support for distributed representations when brain regions are considered separately. However, localized representations are revealed by using analytical methods that separate unique from shared information among brain regions. The distributed nature of shared information and the localized nature of unique information suggest that brain connectivity may encourage spreading of information but category-specific computations are carried out in distinct domain-specific regions. NEW & NOTEWORTHY Whether visual category information is localized in unique domain-specific brain regions or distributed in many domain-general brain regions is hotly contested. We resolve this debate by using multivariate analyses to parse functional MRI signals from different brain regions into unique and shared variance. Our findings support elements of both models and show information is initially localized and then shared among other regions leading to distributed representations being observed.


2011 ◽  
Vol 21 (3) ◽  
pp. 88-95 ◽  
Author(s):  
Deryk S. Beal

We are amassing information about the role of the brain in speech production and the potential neural limitations that coincide with developmental stuttering at a fast rate. As such, it is difficult for many clinician-scientists who are interested in the neural correlates of stuttering to stay informed of the current state of the field. In this paper, I aim to inspire clinician-scientists to tackle hypothesis-driven research that is grounded in neurobiological theory. To this end, I will review the neuroanatomical structures, and their functions, which are implicated in speech production and then describe the relevant differences identified in these structures in people who stutter relative to their fluently speaking peers. I will conclude the paper with suggestions on directions of future research to facilitate the evolution of the field of neuroimaging of stuttering.


1998 ◽  
Vol 10 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Alfonso Caramazza ◽  
Jennifer R. Shelton

We claim that the animate and inanimate conceptual categories represent evolutionarily adapted domain-specific knowledge systems that are subserved by distinct neural mechanisms, thereby allowing for their selective impairment in conditions of brain damage. On this view, (some of) the category-specific deficits that have recently been reported in the cognitive neuropsychological literature—for example, the selective damage or sparing of knowledge about animals—are truly categorical effects. Here, we articulate and defend this thesis against the dominant, reductionist theory of category-specific deficits, which holds that the categorical nature of the deficits is the result of selective damage to noncategorically organized visual or functional semantic subsystems. On the latter view, the sensory/functional dimension provides the fundamental organizing principle of the semantic system. Since, according to the latter theory, sensory and functional properties are differentially important in determining the meaning of the members of different semantic categories, selective damage to the visual or the functional semantic subsystem will result in a category-like deficit. A review of the literature and the results of a new case of category-specific deficit will show that the domain-specific knowledge framework provides a better account of category-specific deficits than the sensory/functional dichotomy theory.


Author(s):  
Giancarlo Guizzardi ◽  
Gerd Wagner

Foundational ontologies provide the basic concepts upon which any domain-specific ontology is built. This chapter presents a new foundational ontology, UFO, and shows how it can be used as a guideline in business modeling and for evaluating business modeling methods. UFO is derived from a synthesis of two other foundational ontologies, GFO/GOL and OntoClean/DOLCE. While their main areas of application are natural sciences and linguistics/cognitive engineering, respectively, the main purpose of UFO is to provide a foundation for conceptual modeling, including business modeling.


2005 ◽  
Vol 28 (4) ◽  
pp. 598-599
Author(s):  
bianca dräger ◽  
caterina breitenstein ◽  
stefan knecht

similar to directional asymmetries in animals, language lateralization in humans follows a bimodal distribution. a majority of individuals are lateralized to the left and a minority of individuals are lateralized to the right side of the brain. however, a biological advantage for either lateralization is lacking. the scenario outlined by vallortigara & rogers (v&r) suggests that language lateralization in humans is not specific to language or human speciation but simply follows an evolutionarily conserved organizational principle of the brain.


2020 ◽  
Vol 117 (36) ◽  
pp. 22522-22531 ◽  
Author(s):  
Mehran Spitmaan ◽  
Hyojung Seo ◽  
Daeyeol Lee ◽  
Alireza Soltani

A long-lasting challenge in neuroscience has been to find a set of principles that could be used to organize the brain into distinct areas with specific functions. Recent studies have proposed the orderly progression in the time constants of neural dynamics as an organizational principle of cortical computations. However, relationships between these timescales and their dependence on response properties of individual neurons are unknown, making it impossible to determine how mechanisms underlying such a computational principle are related to other aspects of neural processing. Here, we developed a comprehensive method to simultaneously estimate multiple timescales in neuronal dynamics and integration of task-relevant signals along with selectivity to those signals. By applying our method to neural and behavioral data during a dynamic decision-making task, we found that most neurons exhibited multiple timescales in their response, which consistently increased from parietal to prefrontal and cingulate cortex. While predicting rates of behavioral adjustments, these timescales were not correlated across individual neurons in any cortical area, resulting in independent parallel hierarchies of timescales. Additionally, none of these timescales depended on selectivity to task-relevant signals. Our results not only suggest the existence of multiple canonical mechanisms for increasing timescales of neural dynamics across cortex but also point to additional mechanisms that allow decorrelation of these timescales to enable more flexibility.


Author(s):  
Vicente Raja ◽  
Marcie Penner ◽  
Lucina Q. Uddin ◽  
Michael L. Anderson

In this chapter, the authors propose neural reuse as a promising unifying framework for the advance of developmental cognitive neuroscience. In order to do so, first, the authors describe the hypothesis of neural reuse and some of the evidence for its importance to and impact on the development of the brain. Then, the authors compare neural reuse with the three prominent frameworks in contemporary developmental cognitive neuroscience—maturational viewpoint, interactive specialization, and skill learning—and show how neural reuse can accommodate their virtues while avoiding their shortcomings. After that, the authors explore some of the implications of neural reuse for the developmental study of math cognition, brain dynamics, and neurodevelopmental disorders. Finally, the authors sketch some future directions of research and some specific research suggestions.


Sign in / Sign up

Export Citation Format

Share Document