Astronomical Influences on Biomagnetic Activity Some 120 MA ago: the Potential for Estimating the Evolution of Ancient Planetary Orbits within the Solar System

1997 ◽  
Vol 161 ◽  
pp. 245-252
Author(s):  
Donald H. Tarling ◽  
Bruno D’argenio ◽  
Marina Iorio

AbstractStudies of the magnetic properties of sedimentary rocks provide a record of biological activity in the geological past of the Earth. There is increasing evidence that the rate of biological activity reflects, in part, the direct and indirect influence of the Earth’s orbit around the Sun. These orbital changes also influence the strength and direction of the geomagnetic field, showing that orbital changes directly affect the processes generating the geomagnetic field. Therefore the presence of these effects means that past changes in the Earth’s orbit and the rate of rotation of the Earth can be investigated from such geological and geophysical records.

Author(s):  
Malcolm LONGAIR

ABSTRACT James Croll was a pioneer in studies of the impact of the slowly changing orbital dynamics of the Earth on climate change. His book Climate and Time in their Geological Relations (1875) was far ahead of its time in seeking correlations between climate change, the occurrence of ice ages and perturbations to the Earth's orbit about the Sun. The astronomical cycles he discovered are now called ‘Milankovitch Cycles’ after the Serbian scientist whose research was first published in the Handbuch der Klimatologie in 1930. The celestial mechanical and astronomical background to Croll's research is the focus of this essay. The development of the understanding of the impact of perturbations of the elliptical planetary orbits by other bodies in the solar system paralleled new mathematical techniques, many of which were developed in association with celestial mechanical problems. The central contributions of many of the major mathematicians of the late 18th and 19th Centuries, including Euler, Lagrange, Laplace and Le Verrier, are highlighted. Although Croll's contributions faded from view for several generations, his pioneering insights have now been demonstrated to have been basically correct.


2016 ◽  
Vol 34 (11) ◽  
pp. 961-974 ◽  
Author(s):  
Lukas Maes ◽  
Romain Maggiolo ◽  
Johan De Keyser

Abstract. The cold ions (energy less than several tens of electronvolts) flowing out from the polar ionosphere, called the polar wind, are an important source of plasma for the magnetosphere. The main source of energy driving the polar wind is solar illumination, which therefore has a large influence on the outflow. Observations have shown that solar illumination creates roughly two distinct regimes where the outflow from a sunlit ionosphere is higher than that from a dark one. The transition between both regimes is at a solar zenith angle larger than 90°. The rotation of the Earth and its orbit around the Sun causes the magnetic polar cap to move into and out of the sunlight. In this paper we use a simple set-up to study qualitatively the effects of these variations in solar illumination of the polar cap on the ion flux from the whole polar cap. We find that this flux exhibits diurnal and seasonal variations even when combining the flux from both hemispheres. In addition there are asymmetries between the outflows from the Northern Hemisphere and the Southern Hemisphere.


Author(s):  
Irfan Danial Hashim ◽  
Ammar Asyraf Ismail ◽  
Muhammad Arief Azizi

Solar Tracker The generation of power from the reduction of fossil fuels is the biggest challenge for the next half century. The idea of converting solar energy into electrical energy using photovoltaic panels holds its place in the front row compared to other renewable sources. But the continuous change in the relative angle of the sun with reference to the earth reduces the watts delivered by solar panel. Conventional solar panel, fixed with a certain angle, limits their area of exposure from the sun due to rotation of the earth. Output of the solar cells depends on the intensity of the sun and the angle of incidence. To solve this problem, an automatic solar cell is needed, where the Solar Tracker will track the motion of the sun across the sky to ensure that the maximum amount of sunlight strikes the panels throughout the day. By using Light Dependent Resistors, it will navigate the solar panel to get the best angle of exposure of light from the sun.


2019 ◽  
Vol 2 (1) ◽  
pp. 27-35
Author(s):  
Anisa Nur Afida ◽  
Yuberti Yuberti ◽  
Mukarramah Mustari

Abstract: This study aims to determine the function of the sun in the perspective of science and al-Qur'an . The research method used is qualitative research methods with the type of research library (Library Research). This research applies data analysis technique of Milles and Huberman model, with steps: 1) data reduction; 2) data display; 3) verification. The result of this research is, the theories that science explain related to the function of the sun in accordance with what is also described in the Qur'an. Science explains that the sun as the greatest source of light for the earth can produce its own energy. This is explained in the Qur'an that the sun is described as siraj and dhiya' which means sunlight is sourced from itself, as the center of the solar system is not static but also moves this matter in the Qur'an explained in QS Yāsin verse 38, besides science and the Qur'an also equally explain that the sun can be made as a calculation of time.Abstrak: Penelitian ini bertujuan untuk mengetahui fungsi matahari dalam perspektif sains dan al-Qur’an..Metode penelitian yang digunakan yaitu metode penelitian kualitatif dengan jenis penelitian pustaka (Library Research). Penelitian ini menggunakan teknik analisis data model Milles dan Huberman, dengan langkah-langkah: 1) reduksi data; 2) display data; 3) verifikasi. Hasil dari penelitian ini yaitu, teori-teori yang sains jelaskan berkaitan dengan fungsi matahari sesuai dengan apa yang juga di jelaskan dalam al-Qur’an. Sains menjelaskan bahwa matahari sebagai sumber energi cahaya terbesar bagi bumi dapat menghasilkan energinya sendiri hal ini dijelaskan dalam al-Qur’an bahwa matahari dideskripsikan sebagai siraj dan dhiya’yang berarti sinar matahari bersumber dari dirinya sendiri, sebagai pusat tata surya matahari tidaklah statis melainkan juga bergerak hal ini dalam al-Qur’an di jelaskan dalam QS Yāsin ayat 38, selain itu sains dan al-Qur’an juga sama-sama menjelaskan bahwa matahari  dapat di jadikan sebagai perhitungan waktu serta petunjuk dari bayang-bayang.


Author(s):  
L. V. Morrison ◽  
F. R. Stephenson ◽  
C. Y. Hohenkerk ◽  
M. Zawilski

Historical reports of solar eclipses are added to our previous dataset (Stephenson et al. 2016 Proc. R. Soc. A 472 , 20160404 ( doi:10.1098/rspa.2016.0404 )) in order to refine our determination of centennial and longer-term changes since 720 BC in the rate of rotation of the Earth. The revised observed deceleration is −4.59 ± 0.08 × 10 −22  rad s −2 . By comparison the predicted tidal deceleration based on the conservation of angular momentum in the Sun–Earth–Moon system is −6.39 ± 0.03 × 10 −22  rad s −2 . These signify a mean accelerative component of +1.8 ± 0.1 × 10 −22  rad s −2 . There is also evidence of an oscillatory variation in the rate with a period of about 14 centuries.


2014 ◽  
Vol 92 (12) ◽  
pp. 1709-1713
Author(s):  
Luis Santiago Ridao ◽  
Rodrigo Avalos ◽  
Martín Daniel De Cicco ◽  
Mauricio Bellini

We explore the geodesic movement on an effective four-dimensional hypersurface that is embedded in a five-dimensional Ricci-flat manifold described by a canonical metric, to applying to planetary orbits in our solar system. Some important solutions are given, which provide the standard solutions of general relativity without any extra force component. We study the perihelion advances of Mercury, the Earth, and Pluto using the extended theory of general relativity. Our results are in very good agreement with observations and show how the foliation is determinant to the value of the perihelion’s advances. Possible applications are not limited to these kinds of orbits.


2015 ◽  
Vol 112 (14) ◽  
pp. 4214-4217 ◽  
Author(s):  
Konstantin Batygin ◽  
Greg Laughlin

The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.


1988 ◽  
Vol 7 (1) ◽  
pp. 38-47
Author(s):  
C. P. Snyman

In view of the principle of actualism the early history of the earth must be explained on the basis of present-day natural phenomena and the basic Laws of Nature. The study of the solar system leads to the conclusion that the planets were formed as by-products when the sun developed from a rotating cloud of cosmic gas and dust. The protoplanets or planetesimals could have accreted as a result of mutual collisions, during which they could have become partly molten so that they could differentiate into a crust, a mantle and a core on the basis of differences in density.


1972 ◽  
Vol 45 ◽  
pp. 401-408 ◽  
Author(s):  
F. L. Whipple

The evolution of the solar system is surveyed, it being presumed that the Sun, Jupiter, and Saturn formed rather quickly and essentially with the composition of the original collapsing cloud of dust and gas. Just as the refractory material of the cloud is considered to have formed into planetesimals, from which the terrestrial planets collected, so is the icy material supposed to have produced comets, or cometesimals, from which Uranus and Neptune (and to some extent Saturn and Jupiter) were built up. The presence of a residual belt of comets beyond the orbit of Neptune is discussed, analysis of possible perturbative effects on P/Halley indicating that the total mass of such a belt at 50 AU from the Sun could not now exceed the mass of the Earth.


2011 ◽  
Vol 20 (01) ◽  
pp. 17-22 ◽  
Author(s):  
I. B. KHRIPLOVICH

We consider the capture of galactic dark matter by the solar system, due to the gravitational three-body interaction of the Sun, a planet, and a dark matter particle. Simple estimates are presented for the capture cross-section, as well as for the density and velocity distributions of captured dark matter particles close to the Earth.


Sign in / Sign up

Export Citation Format

Share Document