scholarly journals An Instrument to Study the Diffuse EUV Astronomical Background

1996 ◽  
Vol 152 ◽  
pp. 611-616 ◽  
Author(s):  
S. Bowyer ◽  
J. Edelstein ◽  
M. Lampton ◽  
L. Morales ◽  
J. Perez Mercader ◽  
...  

The extreme ultraviolet (EUV) diffuse background is the most poorly known of any of the diffuse astronomical backgrounds. Only upper limits to this flux exist, obtained with spectrometers with very crude (from ≈ 15 to 30 Å) resolution; these limits are generally one to two orders of magnitude larger than the expected sources of cosmic flux. A variety of source mechanisms have been postulated to radiate in this bandpass; the most discussed is the hot phase of the interstellar medium. A speculative possibility is that hot dark matter in the form of massive, radiatively unstable neutrinos in our Galaxy will produce a unique line in this bandpass. We describe an instrument employing a new type of spectrometer which will provide ~5 Å resolution and unprecedented sensitivity for diffuse EUV radiation. The instrument will be carried aboard the newly developed Spanish Minisat satellite.

1984 ◽  
Vol 81 ◽  
pp. 344-347
Author(s):  
Christopher Martin ◽  
Stuart Bowyer

AbstractThe Berkeley Extreme Ultraviolet/Far Ultraviolet Shuttle Telescope (BEST) will be launched on the Space Shuttle in November, 1984, as part of the NASA UVX project. The Berkeley spectrometer will make observations of the cosmic diffuse background in the 600-1900 Å band, with a spectral resolution of 10 Å. The sensitivity and spectral resolution of the instrument make it ideal for the study of components of the interstellar medium in the 104 - 106K range.


1979 ◽  
Vol 53 ◽  
pp. 66-85 ◽  
Author(s):  
Stuart Bowyer

The term extreme ultraviolet (EUV or XUV) is employed in upper atmosphere physics and in solar work where it usually denotes the wavelength band between 100 and 1000 Å. Since thermal emission with 30,000 ≲ T ≲ 300,000 K peaks in this band, it might be expected that studies at these wavelengths would be especially useful for objects with effective temperatures in this range. In fact9 few such studies have been carried out. The reason for this anomaly is that very few EUV studies have been made at all, particularly because of unreasonably pessimistic estimates of the opacity of the interstellar medium and partially because of instrumental difficulties encountered at these wavelengths. The first search for extreme ultraviolet emitting objects was carried out in 1975 with instrumentation on the Apollo spacecraft in the Apollo-Soyuz mission. Four of approximately thirty preselected objects were detected with this instrumentation. The objects detected unquestionably are more a reflection of the prejudices of the investigators than they are a sampling of the contents of the universe. Nonetheless, two of the four objects detected were hot white dwarfs: HZ 43 and Feige 24. In addition, upper limits which turned out to be extremely useful were obtained on the Sirius A/B system. These results, plus more recent results obtained on hot white dwarfs will be discussed in this review.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons.


2021 ◽  
Vol 504 (1) ◽  
pp. 723-730
Author(s):  
Shengqi Yang ◽  
Adam Lidz ◽  
Gergö Popping

ABSTRACT The [O iii] 88 $\mu$m fine-structure emission line has been detected into the Epoch of Reionization (EoR) from star-forming galaxies at redshifts 6 < z ≲ 9 with ALMA. These measurements provide valuable information regarding the properties of the interstellar medium (ISM) in the highest redshift galaxies discovered thus far. The [O iii] 88 $\mu$m line observations leave, however, a degeneracy between the gas density and metallicity in these systems. Here, we quantify the prospects for breaking this degeneracy using future ALMA observations of the [O iii] 52 $\mu$m line. Among the current set of 10 [O iii] 88 $\mu$m emitters at 6 < z ≲ 9, we forecast 52 $\mu$m detections (at 6σ) in SXDF-NB1006-2, B14-6566, J0217-0208, and J1211-0118 within on-source observing times of 2–10 h, provided their gas densities are larger than about nH ≳ 102–103 cm−3. Other targets generally require much longer integration times for a 6σ detection. Either successful detections of the 52 $\mu$m line or reliable upper limits will lead to significantly tighter constraints on ISM parameters. The forecasted improvements are as large as ∼3 dex in gas density and ∼1 dex in metallicity for some regions of parameter space. We suggest SXDF-NB1006-2 as a promising first target for 52 $\mu$m line measurements. We discuss how such measurements will help in understanding the mass–metallicity relationship during the EoR.


2017 ◽  
Vol 470 (1) ◽  
pp. 522-538 ◽  
Author(s):  
Emily Sandford ◽  
Andreas H. W. Küpper ◽  
Kathryn V. Johnston ◽  
Jürg Diemand

Abstract Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream ‘disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (i) the thinness of the stream on-sky, (ii) the symmetry of the leading and trailing tails and (iii) the deviation of the tails from a low-order polynomial path on-sky (‘path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ∼30–80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.


1989 ◽  
Vol 120 ◽  
pp. 536-536
Author(s):  
S.L. Snowden

The 1/4 keV diffuse X-ray background (SXRB) is discussed in relation to the local interstellar medium (LISM). The most likely source for these soft X-rays is thermal emission from a hot diffuse plasma. The existence of a non-zero flux from all directions and the short ISM mean free path of these X-rays (1020HI cm-2), coupled with ISM pressure constraints, imply that the plasma has a local component and that it must, at least locally (nearest hundred parsecs), have a large filling factor. Our understanding of the geometry and physical parameters of the LISM is therefore directly tied to our understanding of the SXRB.


2009 ◽  
Vol 18 (12) ◽  
pp. 1903-1912 ◽  
Author(s):  
I. B. KHRIPLOVICH ◽  
D. L. SHEPELYANSKY

We study the capture of galactic dark matter by the solar system. The effect is due to the gravitational three-body interaction between the sun, one of the planets, and a dark matter particle. The analytical estimate for the capture cross-section is derived and the upper and lower bounds for the total mass of the captured dark matter particles are found. The estimates for their density are less reliable. The most optimistic of them gives an enhancement of dark matter density by about three orders of magnitudes compared to its value in our galaxy. However, even this optimistic value remains below the best present observational upper limits by about two orders of magnitude.


Author(s):  
Jianglai Liu

Dark matter, an invisible substance which constitutes 85% of the matter in the observable universe, is one of the greatest puzzles in physics and astronomy today. Dark matter can be made of a new type of fundamental particle, not yet observed due to its feeble interactions with visible matter. In this talk, we present the first results of PandaX-4T, a 4-ton-scale liquid xenon dark matter observatory, searching for these dark matter particles from deep underground. We will briefly summarize the performance of PandaX-4T, introduces details in the data analysis, and present the latest search results on dark matter-nucleon interactions.


1984 ◽  
Vol 81 ◽  
pp. 64-66 ◽  
Author(s):  
F. Bruhweiler ◽  
W. Oegerle ◽  
E. Weiler ◽  
R. Stencel ◽  
Y. Kondo

AbstractWe have combined Copernicus and IUE observations of 5 stars within 50 pc of the Sun to study the ionization of magnesium in the local interstellar medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar Mg I 2852 in the spectra of α Gru, α Eri, and α Lyr, while placing upper limits on Mg I in the spectra of α CMa and α PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperature of the LISM.


2010 ◽  
Vol 25 (18n19) ◽  
pp. 3741-3747
Author(s):  
ABHIJIT BANDYOPADHYAY ◽  
SOVAN CHAKRABORTY ◽  
DEBASISH MAJUMDAR

We consider the recent limits on dark matter–nucleon elastic scattering cross-section from the analysis of CDMS II collaboration using the two signal events observed in CDMS experiment. With these limits we try to interpret the super-Kamiokande (SK) bounds on the detection rates of up-going muons induced by the neutrinos that are produced in the sun from the decay of annihilation products of dark matter (WIMP's) captured in the solar core. Calculated rates of up-going muons for different annihilation channels at SK using CDMS bounds are found to be orders below the predicted upper limits of such up-going muon rates at SK. Thus there exists room for enhancement (boost) of the calculated rates using CDMS limits for interpreting SK bounds. Such a feature is expected to represent the PAMELA data with the current CDMS limits. We also show the dependence of such a possible enhancement factor (boost) on WIMP mass for different WIMP annihilation channels.


Sign in / Sign up

Export Citation Format

Share Document