scholarly journals Deep Optical Imaging of the Compact Group “Seyfert’s Sextet”

2000 ◽  
Vol 174 ◽  
pp. 100-106
Author(s):  
S. Nishiura

AbstractThe compact group of galaxies “Seyfert’s Sextet” shows irregularly shaped soft X-ray morphology. In order to understand its origin, we have obtained a deep optical (VR + I) image of the group. Our image shows that a faint envelope surrounds the member galaxies. We find that optical and soft X-ray images are significantly similar in morphology. This similarity provides direct morphological evidence that the dark matter in Seyfert’s Sextet was originally associated with the individual galaxies and is now spreading out around the group.

2000 ◽  
Vol 174 ◽  
pp. 393-398
Author(s):  
Chris Flynn

AbstractA major uncertainty in studying small groups of galaxies is the total masses of the individual galaxies themselves. I discuss here recent measurements of the mass of the Milky Way disk and new constraints on possible constituents of the putative dark halo.


2020 ◽  
Vol 500 (1) ◽  
pp. 310-318
Author(s):  
Roberto De Propris ◽  
Michael J West ◽  
Felipe Andrade-Santos ◽  
Cinthia Ragone-Figueroa ◽  
Elena Rasia ◽  
...  

ABSTRACT We explore the persistence of the alignment of brightest cluster galaxies (BCGs) with their local environment. We find that a significant fraction of BCGs do not coincide with the centroid of the X-ray gas distribution and/or show peculiar velocities (they are not at rest with respect to the cluster mean). Despite this, we find that BCGs are generally aligned with the cluster mass distribution even when they have significant offsets from the X-ray centre and significant peculiar velocities. The large offsets are not consistent with simple theoretical models. To account for these observations BCGs must undergo mergers preferentially along their major axis, the main infall direction. Such BCGs may be oscillating within the cluster potential after having been displaced by mergers or collisions, or the dark matter halo itself may not yet be relaxed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter provides an overview of the structural and synthetic chemistry, and the industrial applications, of dioxazine pigments, a small group of high performance organic pigments. The color violet (or purple) has frequently assumed a prominent position in history, on account of its rarity and cost. The natural colorant Tyrian purple and the first synthetic textile dye, Mauveine, are prime examples of this unique historical feature. CI Pigment Violet 23, also referred to as Dioxazine Violet or Carbazole Violet, is one of the most universally used organic pigments, by far the most important industrial pigment in the violet shade area. Dioxazine Violet is also unique as the dominant industrial violet pigment providing a brilliant, intense violet color and an excellent all-round set of fastness properties. The pigment has a polycyclic molecular structure, originally described wrongly as a linear arrangement, and later shown to adopt an S-shaped arrangement on the basis of X-ray structural analysis. Two other dioxazine pigments are of rather lesser importance. The synthesis and manufacturing route to CI Pigment Violet 23 is described in the review. Finally, a survey of the principal current applications of the individual dioxazine pigments is presented.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Hiroyuki Yamane ◽  
Masaki Oura ◽  
Osamu Takahashi ◽  
Tomoko Ishihara ◽  
Noriko Yamazaki ◽  
...  

AbstractAdhesion is an interfacial phenomenon that is critical for assembling carbon structural composites for next-generation aircraft and automobiles. However, there is limited understanding of adhesion on the molecular level because of the difficulty in revealing the individual bonding factors. Here, using soft X-ray spectromicroscopy we show the physical and chemical states of an adhesive interface composed of a thermosetting polymer of 4,4’-diaminodiphenylsulfone-cured bisphenol A diglycidyl ether adhered to a thermoplastic polymer of plasma-treated polyetheretherketone. We observe multiscale phenomena in the adhesion mechanisms, including sub-mm complex interface structure, sub-μm distribution of the functional groups, and molecular-level covalent-bond formation. These results provide a benchmark for further research to examine how physical and chemical states correlate with adhesion, and demonstrate that soft X-ray imaging is a promising approach for visualizing the physical and chemical states at adhesive interfaces from the sub-mm level to the molecular level.


2019 ◽  
Vol 15 (S356) ◽  
pp. 226-226
Author(s):  
Viola Allevato

AbstractThe presence of a super massive BH in almost all galaxies in the Universe is an accepted paradigm in astronomy. How these BHs form and how they co-evolve with the host galaxy is one of the most intriguing unanswered problems in modern Cosmology and of extreme relevance to understand the issue of galaxy formation. Clustering measurements can powerfully test theoretical model predictions of BH triggering scenarios and put constraints on the typical environment where AGN live in, through the connection with their host dark matter halos. In this talk, I will present some recent results on the AGN clustering dependence on host galaxy properties, such as galaxy stellar mass, star formation rate and specific BH accretion rate, based on X-ray selected Chandra COSMOS Legacy Type 2 AGN. We found no significant AGN clustering dependence on galaxy stellar mass and specif BHAR for Type 2 COSMOS AGN at mean z ∼ 1.1, with a stellar - halo mass relation flatter than predicted for non active galaxies in the Mstar range probed by our sample. We also observed a negative clustering dependence on SFR, with AGN hosting halo mass increasing with decreasing SFR. Mock catalogs of active galaxies in hosting dark matter halos with logMh[Msun] > 12.5, matched to have the same X-ray luminosity, stellar mass and BHAR of COSMOS AGN predict the observed Mstar - Mh, BHAR - Mh and SFR-Mh relations, at z ∼ 1.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1986
Author(s):  
Andreas Koenig ◽  
Julius Schmidtke ◽  
Leonie Schmohl ◽  
Sibylle Schneider-Feyrer ◽  
Martin Rosentritt ◽  
...  

The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.


Author(s):  
Takayuki Tamura ◽  
Ryo Iizuka ◽  
Yoshitomo Maeda ◽  
Kazuhisa Mitsuda ◽  
Noriko Y. Yamasaki
Keyword(s):  
X Ray ◽  

2010 ◽  
Vol 19 (08n10) ◽  
pp. 1397-1403
Author(s):  
L. MARASSI

Several independent cosmological tests have shown evidences that the energy density of the universe is dominated by a dark energy component, which causes the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press–Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (power–law) mass function (where we apply a non-extensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is ω = -0.58, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the ω parameter is very sensible to modifications in the PL free parameter, q, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.


1949 ◽  
Vol 1 (3) ◽  
pp. 211-224
Author(s):  
G. B. Greenough

SummaryMany papers have been written on the measurement of strain by X-ray diffraction methods and on the interpretation of these strains in terms of stresses. Whereas, during the past few years, the experimental methods of determining the strains have. remained largely unchanged, research has shown that the older techniques for calculating stresses from strains are not always valid.In this paper an attempt is made to describe some of the principles of strain measurement by X-ray diffraction methods to those who are unfamiliar with the methods. The types of stress and strain systems which may exist in polycrystalline metals are then considered, particular attention being paid to the effect of the elastic and plastic anisotropy of the individual crystals. Some indication is given as to how the earlier methods of interpreting X-ray strain measurements should be modified, but no rigid routine method is proposed for use in a general case.


1986 ◽  
Vol 83 (1) ◽  
pp. 77-87 ◽  
Author(s):  
M.D. Kendall ◽  
A. Warley

Mast cell granules were examined by fully quantitative X-ray microanalysis of 20 cells in freeze-dried cryosections. The mast cells were situated mainly in the connective tissue of the thymic capsule of five adult male Carworth Sprague Europe rats. In addition 30 red blood cells were analysed from the same sections. Nineteen of the mast cells had granules rich in S and K. One cell had smaller granules, and in this cell the granules contained high [Ca] and [P] instead of high [S] and [K]. In the majority of cells (13) the S:K ratio was highly correlated and less than 2.2, whereas in the remaining six cells the individual granule ratios were very variable in any one cell and much higher. The mean granule [K] (994 +/− 57 mmol kg-1 dry wt) was about four times the mean cytoplasmic level of 227 +/− 81 mmol kg-1 dry wt. The existence of this difference in concentration between the granules and the cytoplasm suggests that the K in the granules must be bound. The relationship between the [K] and [S] is discussed with regard to the possible binding of heparin and amines in the granules.


Sign in / Sign up

Export Citation Format

Share Document