scholarly journals Jupiter's post-impact atmospheric thermal response

1996 ◽  
Vol 156 ◽  
pp. 293-306
Author(s):  
Barney J. Conrath

Measurements of thermal emission in spectral regions, ranging from the near-infrared to mm wavelengths provide information on the atmospheric thermal structure over impact sites fromμbar levels in the upper stratosphere down to the upper troposphere. Systematic time series of observations relevant to this entire height range over individual spots do not exist. However, by piecing together information at different times from various spots, it is possible to obtain a provisional, semi-quantitative picture of the behavior of the thermal structure over a typical impact site. Immediately after fall-back of the ejecta plume, the upper stratosphere is heated to ∼ 600-1300 K above ambient temperature. The amplitude of the temperature perturbation diminishes with increasing depth in the atmosphere, but even in the upper troposphere a temperature increase of a few kelvins is observed. Initially, the upper stratosphere cools very rapidly with time scales of tens of minutes, presumably the result of strong radiative cooling associated with the high temperatures. After the initial cooling, all levels continue to cool at slower rates with time scales of a few days; however, this is still very rapid compared to radiative cooling of the ambient atmosphere. Enhancements in infrared opacity necessary to produce the cooling radiatively do not appear to be viable, suggesting that dynamical effects may play a dominant role. Possible mechanisms include horizontal mixing with the ambient atmosphere and adiabatic cooling produced by upward motion associated with an anticyclonic vortex. Many questions remain concerning the thermal structure above the impact sites; these are being addressed through ongoing data analysis and modeling efforts.

2021 ◽  
pp. 1-39

Abstract The radiative cooling rate in the tropical upper troposphere is expected to increase as climate warms. Since the tropics are approximately in radiative-convective equilibrium (RCE), this implies an increase in the convective heating rate, which is the sum of the latent heating rate and the eddy heat flux convergence. We examine the impact of these changes on the vertical profile of cloud ice amount in cloud-resolving simulations of RCE. Three simulations are conducted: a control run, a warming run, and an experimental run in which there is no warming but a temperature forcing is imposed to mimic the warming-induced increase in radiative cooling. Surface warming causes a reduction in cloud fraction at all upper tropospheric temperature levels but an increase in the ice mixing ratio within deep convective cores. The experimental run has more cloud ice than the warming run at fixed temperature despite the fact that their latent heating rates are equal, which suggests that the efficiency of latent heating by cloud ice increases with warming. An analytic expression relating the ice-related latent heating rate to a number of other factors is derived and used to understand the model results. This reveals that the increase in latent heating efficiency is driven mostly by 1) the migration of isotherms to lower pressure and 2) a slight warming of the top of the convective layer. These physically robust changes act to reduce the residence time of ice along at any particular temperature level, which tempers the response of the mean cloud ice profile to warming.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Ilaria Sesia ◽  
Giovanna Signorile ◽  
Tung Thanh Thai ◽  
Pascale Defraigne ◽  
Patrizia Tavella

AbstractWe present two different approaches to broadcasting information to retrieve the GNSS-to-GNSS time offsets needed by users of multi-GNSS signals. Both approaches rely on the broadcast of a single time offset of each GNSS time versus one common time scale instead of broadcasting the time offsets between each of the constellation pairs. The first common time scale is the average of the GNSS time scales, and the second time scale is the prediction of UTC already broadcast by the different systems. We show that the average GNSS time scale allows the estimation of the GNSS-to-GNSS time offset at the user level with the very low uncertainty of a few nanoseconds when the receivers at both the provider and user levels are fully calibrated. The use of broadcast UTC prediction as a common time scale has a slightly larger uncertainty, which depends on the broadcast UTC prediction quality, which could be improved in the future. This study focuses on the evaluation of two different common time scales, not considering the impact of receiver calibration, at the user and provider levels, which can nevertheless have an important impact on GNSS-to-GNSS time offset estimation.


2021 ◽  
Vol 13 (10) ◽  
pp. 1939
Author(s):  
Tao Xian ◽  
Gaopeng Lu ◽  
Hongbo Zhang ◽  
Yongping Wang ◽  
Shaolin Xiong ◽  
...  

The thermal structure of the environmental atmosphere associated with Terrestrial Gamma-ray Flashes (TGFs) is investigated with the combined observations from several detectors (FERMI, RHESSI, and Insight-HXMT) and GNSS-RO (SAC-C, COSMIC, GRACE, TerraSAR-X, and MetOp-A). The geographic distributions of TGF-related tropopause altitude and climatology are similar. The regional TGF-related tropopause altitude in Africa and the Caribbean Sea is 0.1–0.4 km lower than the climatology, whereas that in Asia is 0.1–0.2 km higher. Most of the TGF-related tropopause altitudes are slightly higher than the climatology, while some of them have a slightly negative bias. The subtropical TGF-producing thunderstorms are warmer in the troposphere and have a colder and higher tropopause over land than the ocean. There is no significant land–ocean difference in the thermal structure for the tropical TGF-producing thunderstorms. The TGF-producing thunderstorms have a cold anomaly in the middle and upper troposphere and have stronger anomalies than the deep convection found in previous studies.


Author(s):  
P. Gougeon ◽  
C. Moreau

Abstract In thermal spray processes, the coating structure is the result of flattening and cooling of molten droplets on the substrate. The study of the cooling time and evolution of the splat size during impact is then of the highest importance to understand the influence of the spray parameters and substrate characteristics on the coating structure. Measurement of particle temperature during impact requires the use of a high-speed 2-color pyrometer to collect the thermal emission of the particle during flattening. Simultaneous measurement of the splat size with this pyrometer is difficult since the size of the particle can change as it cools down. To measure the splat size independently, a new measurement technique has been developed. In this technique the splat size is measured from the attenuation of the radiation of a laser beam illuminating the particle during impact. Results are presented for plasma sprayed molybdenum particles impacting on a glass substrate at room temperature. It is shown that the molybdenum splat reaches its maximum extent about 2 microseconds after the impact. In this work, we show that this increase of the splat surface is followed by a phase during which the splat size decreases significantly during 2 to 3 microseconds.


Author(s):  
Dehai Luo ◽  
Wenqi Zhang

AbstractThis paper examines the impact of the meridional and vertical structures of a preexisting upstream storm track (PUST) organized by preexisting synoptic-scale eddies on eddy-driven blocking in a nonlinear multi-scale interaction model. In this model, the blocking is assumed, based on observations, to be comprised of barotropic and first baroclinic modes, whereas the PUST consists of barotropic, first baroclinic and second baroclinic modes. It is found that the nonlinearity (dispersion) of blocking is intensified (weakened) with increasing amplitude of the first baroclinic mode of the blocking itself. The blocking tends to be long-lived in this case. The lifetime and strength of blocking are significantly influenced by the amplitude of the first baroclinic mode of blocking for given basic westerly winds (BWWs), whereas its spatial pattern and evolution are also affected by the meridional and vertical structures of the PUST.It is shown that the blocking mainly results from the transient eddy forcing induced by the barotropic and first baroclinic modes of PUST, whereas its second baroclinic mode contributes little to the transient eddy forcing. When the PUST shifts northward, eddy-driven blocking shows an asymmetric dipole structure with a strong anticyclone/weak cyclone in a uniform BWW, which induces northward-intensified westerly jet and storm track anomalies mainly on the north side of blocking. However, when the PUST has no meridional shift and is mainly located in the upper troposphere, a north-south anti-symmetric dipole blocking and an intensified split jet with maximum amplitude in the upper troposphere form easily for vertically varying BWWs without meridional shear.


2016 ◽  
Author(s):  
M. Venkat Ratnam ◽  
S. Ravindra Babu ◽  
S. S. Das ◽  
Ghouse Basha ◽  
B. V. Krishnamurthy ◽  
...  

Abstract. Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) process in the Upper Troposphere and Lower Stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the North Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) Radio Occultation (RO) measurements and ozone and water vapor concentrations in UTLS region are obtained from Aura-Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km from the centre of cyclone. In our earlier study we have observed decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K) and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within the 500 km from the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from cyclone centre whereas the enhancement in the water vapor in the lower stratosphere is more significant on south-east side extending from 500–1000 km away from the cyclone centre. We estimated the cross-tropopause mass flux for different intensities of cyclones and found that the mean flux from stratosphere to troposphere for cyclonic stroms is 0.05 ± 0.29 × 10−3 kg m−2 and for very severe cyclonic stroms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed in the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget and consequentially the STE in the UTLS region.


2013 ◽  
Vol 13 (5) ◽  
pp. 2423-2434 ◽  
Author(s):  
B. H. Samset ◽  
G. Myhre ◽  
M. Schulz ◽  
Y. Balkanski ◽  
S. Bauer ◽  
...  

Abstract. The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.


2018 ◽  
Vol 31 (24) ◽  
pp. 9903-9920 ◽  
Author(s):  
Elina Plesca ◽  
Stefan A. Buehler ◽  
Verena Grützun

Atmosphere-only CMIP5 idealized climate experiments with quadrupling of atmospheric CO2 are analyzed to understand the fast response of the tropical overturning circulation to this forcing and the main mechanism of this response. A new metric for the circulation, based on pressure velocity in the subsidence regions, is defined, taking advantage of the dynamical stability of these regions and their reduced sensitivity to the GCM’s cloud and precipitation parameterization schemes. This definition permits us to decompose the circulation change into a sum of relative changes in subsidence area, static stability, and heating rate. A comparative analysis of aqua- and Earth-like planet experiments reveals the effect of the land–sea contrast on the total change in circulation. On average, under the influence of CO2 increase without surface warming, the atmosphere radiatively cools less, and this drives the 3%–4% slowdown of the tropical circulation. Even in an Earth-like planet setup, the circulation weakening is dominated by the radiatively driven changes in the subsidence regions over the oceans. However, the land–sea differential heating contributes to the vertical pattern of the circulation weakening by driving the vertical expansion of the tropics. It is further found that the surface warming would, independently of the CO2 effect, lead to up to a 12% slowdown in circulation, dominated by the enhancement of the static stability in the upper troposphere. The two mechanisms identified above combine in the coupled experiment with abrupt quadrupling, causing a circulation slowdown (focused in the upper troposphere) of up to 18%. Here, the independent effect of CO2 has a considerable impact only at time scales less than one year, being overtaken quickly by the impact of surface warming.


2013 ◽  
Vol 13 (12) ◽  
pp. 31891-31932 ◽  
Author(s):  
R. Paoli ◽  
O. Thouron ◽  
J. Escobar ◽  
J. Picot ◽  
D. Cariolle

Abstract. Large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere (UTLS) are carried out and analyzed using the mesoscale atmospheric model Méso-NH. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8×109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the sub-kilometric range, down to the Ozmidov scales that obey isotropic Kolmorogov turbulence. The results are in line with observational analysis based on in situ measurements from existing campaigns.


Sign in / Sign up

Export Citation Format

Share Document