scholarly journals Obtaining microspherical cryotargets by the method of contact point

1989 ◽  
Vol 7 (1) ◽  
pp. 15-26 ◽  
Author(s):  
S. Denus ◽  
W. Muniak ◽  
E. Woryna

In this paper we present main parameters of the thermonuclear fuel and relations connecting the thickness of an isothermal homogeneous cryolayer with gaseous microballoon parameters. A model of the temperature field calculation (the azimuthal temperature gradient and the temperature distribution) and the way of shaping it under practical experimental conditions by the contact-point method is presented. The temperature distribution calculation explains the “sag” effect observed in many experiments.

2011 ◽  
Vol 675-677 ◽  
pp. 987-990
Author(s):  
Ling Tang ◽  
Xu Dong Wang ◽  
Hai Jing Zhao ◽  
Man Yao

In this paper, the flow, heat transfer and stress during solidification process of the machine tool bed weighed about 2.5ton that has been optimized by structural topologymethod, was calculated with ProCAST software, and the causes of the crack forming in the casting of the machine tool bed was analysed. According to the calculation results, the structural design of the local part where cracks tends to form has been improved, and the heat transfer and the stress are calculated again. By comparing the temperature field with filling of molten cast iron and without filling, it has been found that there was little effect of filling on the results of temperature distribution of the cast, therefore the effect of filling can be ignored in the following temperature field calculation to save computation time. The model has been simplified in the stress field calculation with considering the complexity of the machine tool bed and the cost of computation. Then, the merits and demerits of the original design and the improved design are compared and analyzed depending on the calculated temperature and stress results. It is suggested that the improved one could get a more uniform temperature distribution and then the trend of the crack occurring can be greatly reduced. These results could provide a guide for the actual casting production, achieving the scientific control of the production of castings, ensuring the quality of the castings.


2012 ◽  
Vol 57 (4) ◽  
pp. 1111-1116 ◽  
Author(s):  
M. Maj ◽  
W. Oliferuk

In the present paper the onset of plastic strain localization was determined using two independent methods based on strain and temperature field analysis. The strain field was obtained from markers displacement recorded using visible light camera. In the same time, on the other side of the specimen, the temperature field was determined by means of infrared camera. The objective of this work was to specify the conditions when the non-uniform temperature distribution can be properly used as the indicator of plastic strain localization. In order to attain the objective an analysis of strain and temperature fields for different deformation rates were performed. It has been shown, that for given experimental conditions, the displacement rate 2000 mm/min is a threshold, above which the non-uniform temperature distribution can be used as the indicator of plastic strain localization.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hailin Lu ◽  
Jing Hao ◽  
Jiwei Zhong ◽  
Yafei Wang ◽  
Hongyin Yang

In this study, based on the recorded meteorological data of the bridge site, a spatial-temporal temperature model of a 3-span steel box girder is developed through applying the thermal analysis software TAITHERM. Firstly, the rationality and dependability of the proposed spatial-temporal temperature model are adequately verified by means of implementing the comparison with the measurement data. Then the temperature distribution of the steel box girder is analyzed and discussed in detail. The analytical results show that the time of the bottom of pavement reaching the daily maximum temperature lags behind the top of pavement by 2 or 3 hours due to the thermal insulation effect of pavement, and the maximum vertical temperature gradient of the structure exceeds the existing standards. Moreover, with the help of the analytical model, a parametric study of comprehensively meteorological factors is also performed. The results of the sensitivity analysis indicate that solar radiation is the most significant factor affecting the maximum vertical temperature gradient of the steel box girder, followed by air temperature and wind speed. After that, with the representative values of the extreme meteorological parameters during 100-year return period in Wuhan City in China being considered as the thermal boundary conditions, the temperature distribution of the steel box girder is further studied for investigation purpose. The results demonstrate that the heat conduction process of the steel box girder has distinct “box-room effect,” and it is of great necessity to consider both the actual weather conditions at the bridge site and the “box-room effect” of steel box girder when calculating thermal behaviors of bridge structures. Finally, it is related that the particular method proposed in this paper possesses a satisfactory application prospect for temperature field analysis upon various types of bridges in different regions.


2011 ◽  
Vol 383-390 ◽  
pp. 2578-2584
Author(s):  
Lin Dong ◽  
Hui Ping Jiang ◽  
He Shun Wang

Based on finite element simulation, the temperature field model for the frictional pair of third rail and collector shoe under the coupling of contact resistor thermal and friction thermal was established. The method of coupling the two kinds of thermal was given in detail, the temperature field was calculated, and the maximum coupled temperature changing under different electric current, velocity, and displacement of the model was studied. The results show that the temperature raising effect of friction thermal and contact resistor thermal is different. In the process of mechanical friction without electric current, the highest temperature is in the contact center line, the temperature distribution expands around the contact zone in descending tendency. But in couple condition, the temperature distribution with electric current expands around the contact point in descending tendency. In the two conditions, the temperature gradients are all becoming smaller. The maximum coupled temperature increases with the increasing of the electric current, and decreases with the increasing of the velocity under the constant displacement and normal force. The maximum coupled temperature increases linearly with the increasing of displacement under constant electric current, velocity and normal force.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1792
Author(s):  
Bingbing Dong ◽  
Yu Gu ◽  
Changsheng Gao ◽  
Zhu Zhang ◽  
Tao Wen ◽  
...  

In recent years, the new type design of current transformer with bushing structure has been widely used in the distribution network system due to its advantages of miniaturization, high mechanical strength, maintenance-free, safety and environmental protection. The internal temperature field distribution is an important characteristic parameter to characterize the thermal insulation and aging performance of the transformer, and the internal temperature field distribution is mainly derived from the joule heat generated by the primary side guide rod after flowing through the current. Since the electric environment is a transient field and the thermal environment changes slowly with time as a steady field under the actual conditions, it is more complex and necessary to study the electrothermal coupling field of current transformer (CT). In this paper, a 3D simulation model of a new type design of current transformer for distribution network based on electric-thermal coupling is established by using finite element method (FEM) software. Considering that the actual thermal conduction process of CT is mainly by conduction, convection and radiation, three different kinds of boundary conditions such as solid heat transfer boundary condition, heat convection boundary condition and surface radiation boundary condition are applied to the CT. Through the model created above, the temperature rise process and the distribution characteristics of temperature gradient of the inner conductor under different current, different ambient temperatures and different core diameters conditions are studied. Meanwhile, the hottest temperature and the maximum temperature gradient difference are calculated. According to this, the position of weak insulation of the transformer is determined. The research results can provide a reference for the factory production of new type design of current transformer.


2021 ◽  
Vol 1791 (1) ◽  
pp. 012072
Author(s):  
S V Fedorov ◽  
A S Tolstukha ◽  
I V Fedorov ◽  
V V Zhukovskyy

Author(s):  
G Atefi ◽  
M A Abdous ◽  
A Ganjehkaviri ◽  
N Moalemi

The objective of this article is to derive an analytical solution for a two-dimensional temperature field in a hollow cylinder, which is subjected to a periodic boundary condition at the outer surface, while the inner surface is insulated. The material is assumed to be homogeneous and isotropic with time-independent thermal properties. Because of the time-dependent term in the boundary condition, Duhamel's theorem is used to solve the problem for a periodic boundary condition. The periodic boundary condition is decomposed using the Fourier series. This condition is simulated with harmonic oscillation; however, there are some differences with the real situation. To solve this problem, first of all the boundary condition is assumed to be steady. By applying the method of separation of variables, the temperature distribution in a hollow cylinder can be obtained. Then, the boundary condition is assumed to be transient. In both these cases, the solutions are separately calculated. By using Duhamel's theorem, the temperature distribution field in a hollow cylinder is obtained. The final result is plotted with respect to the Biot and Fourier numbers. There is good agreement between the results of the proposed method and those reported by others for this geometry under a simple harmonic boundary condition.


2011 ◽  
Vol 199-200 ◽  
pp. 1492-1495 ◽  
Author(s):  
Guo Shun Wang ◽  
Rong Fu ◽  
Liang Zhao

The simulation calculation on the temperature field of the disc brake system on high-speed trains under the working condition of constant speed at 50Km/h is made. A steady-state calculation model is established according to the actual geometric size of a brake disc and a brake pad, and the analog calculation and simulation on the temperature field of the brake disc and the brake pad by using the large-scale nonlinear finite element software ABAQUS are carried out. The distribution rules of the temperature field of the brake disc and the brake pad under the working condition of constant speed are made known. The surface temperature of the brake disc at friction radius is the highest, with a band distribution for temperature. There exists a temperature flex point in the direction of thickness, of which the thickness occupies 15% of that of the brake disc; due to the small volume of the brake pad, the temperature gradient of the whole brake pad is not sharp, and larger temperature gradient occurs only on the contact surface.


2017 ◽  
Vol 835 ◽  
pp. 170-216 ◽  
Author(s):  
Sayan Das ◽  
Shubhadeep Mandal ◽  
Suman Chakraborty

The motion of a viscous droplet in unbounded Poiseuille flow under the combined influence of bulk-insoluble surfactant and linearly varying temperature field aligned in the direction of imposed flow is studied analytically. Neglecting fluid inertia, thermal convection and shape deformation, asymptotic analysis is performed to obtain the velocity of a force-free surfactant-laden droplet. The droplet speed and direction of motion are strongly influenced by the interfacial transport of surfactant, which is governed by surface Péclet number. The present study is focused on the following two limiting situations of surfactant transport: (i) surface-diffusion-dominated surfactant transport considering small surface Péclet number, and (ii) surface-convection-dominated surfactant transport considering high surface Péclet number. Thermocapillary-induced Marangoni stress, the strength of which relative to viscous stress is represented by the thermal Marangoni number, has a strong influence on the distribution of surfactant on the droplet surface. The present study shows that the motion of a surfactant-laden droplet in the combined presence of temperature and imposed Poiseuille flow cannot be obtained by a simple superposition of the following two independent results: migration of a surfactant-free droplet in a temperature gradient, and the motion of a surfactant-laden droplet in a Poiseuille flow. The temperature field not only affects the axial velocity of the droplet, but also has a non-trivial effect on the cross-stream velocity of the droplet in spite of the fact that the temperature gradient is aligned with the Poiseuille flow direction. When the imposed temperature increases in the direction of the Poiseuille flow, the droplet migrates towards the flow centreline. The magnitude of both axial and cross-stream velocity components increases with the thermal Marangoni number. However, when the imposed temperature decreases in the direction of the Poiseuille flow, the magnitude of both axial and cross-stream velocity components may increase or decrease with the thermal Marangoni number. Most interestingly, the droplet moves either towards the flow centreline or away from it. The present study shows a critical value of the thermal Marangoni number beyond which the droplet moves away from the flow centreline which is in sharp contrast to the motion of a surfactant-laden droplet in isothermal flow, for which the droplet always moves towards the flow centreline. Interestingly, we show that the above picture may become significantly altered in the case where the droplet is not a neutrally buoyant one. When the droplet is less dense than the suspending medium, the presence of gravity in the direction of the Poiseuille flow can lead to cross-stream motion of the droplet away from the flow centreline even when the temperature increases in the direction of the Poiseuille flow. These results may bear far-reaching consequences in various emulsification techniques in microfluidic devices, as well as in biomolecule synthesis, vesicle dynamics, single-cell analysis and nanoparticle synthesis.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia Wang ◽  
Fabian Nitschke ◽  
Maziar Gholami Korzani ◽  
Thomas Kohl

Abstract Temperature logs have important applications in the geothermal industry such as the estimation of the static formation temperature (SFT) and the characterization of fluid loss from a borehole. However, the temperature distribution of the wellbore relies on various factors such as wellbore flow conditions, fluid losses, well layout, heat transfer mechanics within the fluid as well as between the wellbore and the surrounding rock formation, etc. In this context, the numerical approach presented in this paper is applied to investigate the influencing parameters/uncertainties in the interpretation of borehole logging data. To this end, synthetic temperature logs representing different well operation conditions were numerically generated using our newly developed wellbore simulator. Our models account for several complex operation scenarios resulting from the requirements of high-enthalpy wells where different flow conditions, such as mud injection with- and without fluid loss and shut-in, occur in the drill string and the annulus. The simulation results reveal that free convective heat transfer plays an important role in the earlier evolution of the shut-in-time temperature; high accuracy SFT estimation is only possible when long-term shut-in measurements are used. Two other simulation scenarios for a well under injection conditions show that applying simple temperature correction methods on the non-shut-in temperature data could lead to large errors for SFT estimation even at very low injection flow rates. Furthermore, the magnitude of the temperature gradient increase depends on the flow rate, the percentage of fluid loss and the lateral heat transfer between the fluid and the rock formation. As indicated by this study, under low fluid losses (< 30%) or relatively higher flow rates (> 20 L/s), the impact of flow rate and the lateral heat transfer on the temperature gradient increase can be ignored. These results provide insights on the key factors influencing the well temperature distribution, which are important for the choice of the drilling data to estimate SFT and the design of the inverse modeling scheme in future studies to determine an accurate SFT profile for the high-enthalpy geothermal environment.


Sign in / Sign up

Export Citation Format

Share Document