Robot force control without dynamic model: theory and experiments

Robotica ◽  
2012 ◽  
Vol 31 (1) ◽  
pp. 149-171 ◽  
Author(s):  
Juan C. Rivera-Dueñas ◽  
Marco A. Arteaga-Pérez

SUMMARYAmong the many challenges to deal with, when a robot is interacting with its environment, friction at the contact surface and/or at the joints is one of the most important to be considered. In this paper we propose a control algorithm for the tracking of position and force (unconstrained orientation case only) of a manipulator end-effector that does not require the robot model for implementation. This characteristic has the advantage of making it capable to compensate friction effects without any previous estimation. Furthermore, no velocity measurements are needed, and the unit quaternion is employed for orientation control. Experimental and simulation results are provided.

2019 ◽  
Vol 13 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Piotr Gierlak

Abstract The paper presents the issue position/force control of a manipulator in contact with the flexible environment. It consists of the realisation of manipulator end-effector motion on the environment surface with the simultaneous appliance of desired pressure on the surface. The paper considers the case of a flexible environment when its deformation occurs under the pressure, which has a significant influence on the control purpose realisation. The article presents the model of the controlled system and the problem of tracking control with the use of neural networks. The control algorithm includes contact surface flexibility in order to improve control quality. The article presents the results of numerical simulations, which indicate the correctness of the applied control law.


2011 ◽  
Vol 48-49 ◽  
pp. 589-592 ◽  
Author(s):  
Shi Xiang Tian ◽  
Sheng Ze Wang

In this paper, a novel hybrid position/force controller has been proposed for a three degree of freedom (3-DOF) of robot trajectory following that is required to switch between position and force control. The whole controller consists of two components: a positional controller and a force controller. Depending on whether the end-effector is in free space or in contact with the environments during work, the two subcontrollers run simultaneously to guide the manipulator tracking in free space and constraint environments. After the principle and stability of the controller are briefly analyzed, simulation results verify that the proposed controller attains a high performance.


Author(s):  
A. Yetik ◽  
V. Karadag

There are extremely important applications to investigate the control of contact between the end-effectors and the object. During controlling an object, static or in motion, the robot arm should not be damaged. Forces are important in such conditions. The forces between the end-effectors and the object have to be controlled. The motion of the robot arm changes forces. Thats why, to control forces, a force kontrol algorithm must be developed. Previous conventional force control algorithms could not control the robot effectively by only considering the variation of working environment. In this study, a control algorithm strategy to achieve the desired interactions forces between the robot end-effector and the environment during contact tasks, has been developed. The surface of the object and robot are very stiff, thus contact spring coefficient Kc is very large, because of this Kc effect, the results of the forces simulation results, but we get suitable results. Study include, modelling robot arm, evaluating measured forces during contact and constructing a suitable force control algorithm, dynamics, kinematics and simulation results. In this study, we used impedans control which the surface of the object is very stiff, as known as impedance control does not try to track position and force trajectories directly, but rather to regulate the dynamic relationship between the contact forces and manipulator positions, namely the mechanical impedance. Impedance control focused on the design of a robot’s dynamic behavior as seen from the environment. In this control strategy, no hardware or software, switch is needed in the robot’s control system when the robot travels from the free motion space to the constrained space. The force feedback loop closes naturally as soon as the robot interacts with the environment, which changes the robot’s impedance as seen from the environment. By controlling the manipulator positions, and regulating their relationship to the contact forces, the manipulator can be controlled to maintain appropriate contact forces.


1991 ◽  
Vol 113 (3) ◽  
pp. 395-400 ◽  
Author(s):  
G. M. Bone ◽  
M. A. Elbestawi ◽  
R. Lingarkar ◽  
L. Liu

An active end effector based force control system for robotic deburring is successfully implemented using a PUMA-560 robot. The system goal of a controlled chamfer depth with minimum surface roughness is achieved by minimizing the normal chamfering force variance online. Several force control algorithms are evaluated based on this objective. The control laws are designed based on models combining a deterministic plant with a stochastic disturbance which are identified from experimental data. Simulation results are verified by real-time force control experiments. Performance comparisons are made based on the force variance and surface roughness achieved by each controller. The 6 step extended horizon controller is shown to achieve the best overall performance.


Author(s):  
Mohamed Boukattaya ◽  
Tarak Damak ◽  
Mohamed Jallouli

In this paper, we present a dynamic redundancy resolution technique for mobile manipulator subject to joint torque limits. First, the dynamic model of the mobile manipulator in feasible motion space is given. Next, a control algorithm is proposed which completely decouples the motion of the system into the end-effector motion in the task space and an internal motion in the null space and controls them in prioritized basis with priority given to the primary task space and enables the selection of characteristics in both subspaces separately. A special attention is given to the joints torque limits avoidance where a new weighted pseudo-inverse of the Jacobian that accounts for both inertia and torque limits is proposed to solve problems inherent to torque limits of the system. Simulation results are given to illustrate the coordination of two subsystems in executing the desired trajectory without violating the joint torque limits.


2013 ◽  
Vol 631-632 ◽  
pp. 1166-1171
Author(s):  
Huang Ran ◽  
Qian Xiang Zhou ◽  
Zhong Qi Liu

It is common to use space arm for maintaining and assembling. The major technology problems to solve first are the deformability, the soft and tightening contact with the target. Use ER as the contactor of end effector which is learned from the space station end effector can overcome many problems, as the poor location precision and uncontainable attitude which is bring by the big space arm. The design of multi-DOF Deformable-Contact-Surface-Based shape adaptive end effector is introduced in this text. The simulation result by Matlab software proves the design not only can tight connect the target, but also can suppress vibration and meet the precise demand of location, precise force control and deformability. It can meet the multi-mission in the future.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3498
Author(s):  
Youqiang Zhang ◽  
Cheol-Su Jeong ◽  
Minhyo Kim ◽  
Sangrok Jin

This paper shows the design and modeling of an end effector with a bidirectional telescopic mechanism to allow a surgical assistant robot to hold and handle surgical instruments. It also presents a force-free control algorithm for the direct teaching of end effectors. The bidirectional telescopic mechanism can actively transmit force both upwards and downwards by staggering the wires on both sides. In order to estimate and control torque via motor current without a force/torque sensor, the gravity model and friction model of the device are derived through repeated experiments. The LuGre model is applied to the friction model, and the static and dynamic parameters are obtained using a curve fitting function and a genetic algorithm. Direct teaching control is designed using a force-free control algorithm that compensates for the estimated torque from the motor current for gravity and friction, and then converts it into a position control input. Direct teaching operation sensitivity is verified through hand-guiding experiments.


Author(s):  
Guang Xia ◽  
Yan Xia ◽  
Xiwen Tang ◽  
Linfeng Zhao ◽  
Baoqun Sun

Fluctuations in operation resistance during the operating process lead to reduced efficiency in tractor production. To address this problem, the project team independently developed and designed a new type of hydraulic mechanical continuously variable transmission (HMCVT). Based on introducing the mechanical structure and transmission principle of the HMCVT system, the priority of slip rate control and vehicle speed control is determined by classifying the slip rate. In the process of vehicle speed control, the driving mode of HMCVT system suitable for the current resistance state is determined by classifying the operation resistance. The speed change rule under HMT and HST modes is formulated with the goal of the highest production efficiency, and the displacement ratio adjustment surfaces under HMT and HST modes are determined. A sliding mode control algorithm based on feedforward compensation is proposed to address the problem that the oil pressure fluctuation has influences on the adjustment accuracy of hydraulic pump displacement. The simulation results of Simulink show that this algorithm can not only accurately follow the expected signal changes, but has better tracking stability than traditional PID control algorithm. The HMCVT system and speed control strategy models were built, and simulation results show that the speed control strategy can restrict the slip rate of driving wheels within the allowable range when load or road conditions change. When the tractor speed is lower than the lower limit of the high-efficiency speed range, the speed change law formulated in this paper can improve the tractor speed faster than the traditional rule, and effectively ensure the production efficiency. The research results are of great significance for improving tractor’s adaptability to complex and changeable working environment and promoting agricultural production efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 287
Author(s):  
Byeongjin Kim ◽  
Soohyun Kim

Walking algorithms using push-off improve moving efficiency and disturbance rejection performance. However, the algorithm based on classical contact force control requires an exact model or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on neural networks. The proposed model is adapted to a linear quadratic regulator for position control and balance. The results demonstrate that this neural network-based model can accurately generate force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm significantly improves the accuracy of the force control. One step simulation was used to analyze the robustness of the algorithm. In summary, this walking control algorithm generates a push-off force with precision and enables it to reject disturbance rapidly.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 288
Author(s):  
Adam Wolniakowski ◽  
Charalampos Valsamos ◽  
Kanstantsin Miatliuk ◽  
Vassilis Moulianitis ◽  
Nikos Aspragathos

The determination of the optimal position of a robotic task within a manipulator’s workspace is crucial for the manipulator to achieve high performance regarding selected aspects of its operation. In this paper, a method for determining the optimal task placement for a serial manipulator is presented, so that the required joint torques are minimized. The task considered comprises the exercise of a given force in a given direction along a 3D path followed by the end effector. Given that many such tasks are usually conducted by human workers and as such the utilized trajectories are quite complex to model, a Human Robot Interaction (HRI) approach was chosen to define the task, where the robot is taught the task trajectory by a human operator. Furthermore, the presented method considers the singular free paths of the manipulator’s end-effector motion in the configuration space. Simulation results are utilized to set up a physical execution of the task in the optimal derived position within a UR-3 manipulator’s workspace. For reference the task is also placed at an arbitrary “bad” location in order to validate the simulation results. Experimental results verify that the positioning of the task at the optimal location derived by the presented method allows for the task execution with minimum joint torques as opposed to the arbitrary position.


Sign in / Sign up

Export Citation Format

Share Document