Force Control for Robotic Deburring

1991 ◽  
Vol 113 (3) ◽  
pp. 395-400 ◽  
Author(s):  
G. M. Bone ◽  
M. A. Elbestawi ◽  
R. Lingarkar ◽  
L. Liu

An active end effector based force control system for robotic deburring is successfully implemented using a PUMA-560 robot. The system goal of a controlled chamfer depth with minimum surface roughness is achieved by minimizing the normal chamfering force variance online. Several force control algorithms are evaluated based on this objective. The control laws are designed based on models combining a deterministic plant with a stochastic disturbance which are identified from experimental data. Simulation results are verified by real-time force control experiments. Performance comparisons are made based on the force variance and surface roughness achieved by each controller. The 6 step extended horizon controller is shown to achieve the best overall performance.

Robotica ◽  
1989 ◽  
Vol 7 (4) ◽  
pp. 303-308 ◽  
Author(s):  
G. M. Bone ◽  
M. A. Elbestawi

SUMMARYAn active force control system for robotic deburring based on an active end effector is developed. The system utilizes a PUMA-560 six axis robot. The robot's structural dynamics, positioning errors, and the deburring cutting process are examined in detail. Based on ARMAX plant models identified using the least squares method, a discrete PID controller is designed and tested in real-time. The control system is shown to maintain the force within l N of the reference, and reduce chamfer depth errors to 0.12 mm from the 1 mm possible without closed-loop control.


2011 ◽  
Vol 48-49 ◽  
pp. 589-592 ◽  
Author(s):  
Shi Xiang Tian ◽  
Sheng Ze Wang

In this paper, a novel hybrid position/force controller has been proposed for a three degree of freedom (3-DOF) of robot trajectory following that is required to switch between position and force control. The whole controller consists of two components: a positional controller and a force controller. Depending on whether the end-effector is in free space or in contact with the environments during work, the two subcontrollers run simultaneously to guide the manipulator tracking in free space and constraint environments. After the principle and stability of the controller are briefly analyzed, simulation results verify that the proposed controller attains a high performance.


Robotica ◽  
2012 ◽  
Vol 31 (1) ◽  
pp. 149-171 ◽  
Author(s):  
Juan C. Rivera-Dueñas ◽  
Marco A. Arteaga-Pérez

SUMMARYAmong the many challenges to deal with, when a robot is interacting with its environment, friction at the contact surface and/or at the joints is one of the most important to be considered. In this paper we propose a control algorithm for the tracking of position and force (unconstrained orientation case only) of a manipulator end-effector that does not require the robot model for implementation. This characteristic has the advantage of making it capable to compensate friction effects without any previous estimation. Furthermore, no velocity measurements are needed, and the unit quaternion is employed for orientation control. Experimental and simulation results are provided.


2014 ◽  
Vol 8 (2) ◽  
pp. 243-252 ◽  
Author(s):  
Masato Okada ◽  
◽  
Hiroaki Kozuka ◽  
Hiroshi Tachiya ◽  
Taira Iwasaki ◽  
...  

This paper proposes a novel diamond tip burnishing process to improve the integrity of various free-curved surfaces using a spherical 5-Degree-Of-Freedom (5-DOF), hybrid parallelmechanism. The developed parallel mechanism, which has high rigidity and a large workspace, is composed of a spherical 3-DOF parallel mechanism and anXYstage, and is equipped with a burnishing tool on its output link. Using a threedimensional force control system, the parallel mechanism can adjust the thrust force in the burnishing process. The surface roughness and profile of the stainless steel (AISI 316) workpiece, burnished by the proposed method, were evaluated. The surface integrity depended on the values of cross-feed and thrust force, which were controlled by the hybrid parallel mechanism. In addition, the surface roughness improved as cross-feed decreased and thrust force increased. The preliminary surface roughness ofRa= 2.5 µm was improved toRa= 0.25 µm in the burnishing process of the free curved surface, and homogeneous surface integrity was obtained. The results thus suggest that the proposed burnishing method can achieve a highquality surface finish, even on a free curved surface.


2014 ◽  
Vol 487 ◽  
pp. 635-638
Author(s):  
Yun Fei Mai ◽  
Shao Long Liu ◽  
Wen Jing Ding

For the problems that exist in EPS composite test-benches, PID control laws are expounded, a composite PID controller is designed, which is integrated with multiple advanced PID control algorithms (variable-integral PID algorithm, PID algorithm with filters, partial derivative PID algorithm, PID algorithm with dead zone), and it is simulated by MATLAB. The simulation results show that the improvement of accuracy and the impacts mitigation of the nonlinearity and external electromagnetic interferences are achieved well through the composite PID controller, and there is practical significance.


Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


2015 ◽  
Vol 23 (04) ◽  
pp. 1540007 ◽  
Author(s):  
Guolong Liang ◽  
Wenbin Zhao ◽  
Zhan Fan

Direction of arrival (DOA) estimation is of great interest due to its wide applications in sonar, radar and many other areas. However, the near-field interference is always presented in the received data, which may result in degradation of DOA estimation. An approach which can suppress the near-field interference and preserve the far-field signal desired by using a spatial matrix filter is proposed in this paper and some typical DOA estimation algorithms are adjusted to match the filtered data. Simulation results show that the approach can improve capability of DOA estimation under near-field inference efficiently.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Chen Zhang ◽  
Zhuo Tang ◽  
Kenli Li ◽  
Jianzhong Yang ◽  
Li Yang

Installing a six-dimensional force/torque sensor on an industrial arm for force feedback is a common robotic force control strategy. However, because of the high price of force/torque sensors and the closedness of an industrial robot control system, this method is not convenient for industrial mass production applications. Various types of data generated by industrial robots during the polishing process can be saved, transmitted, and applied, benefiting from the growth of the industrial internet of things (IIoT). Therefore, we propose a constant force control system that combines an industrial robot control system and industrial robot offline programming software for a polishing robot based on IIoT time series data. The system mainly consists of four parts, which can achieve constant force polishing of industrial robots in mass production. (1) Data collection module. Install a six-dimensional force/torque sensor at a manipulator and collect the robot data (current series data, etc.) and sensor data (force/torque series data). (2) Data analysis module. Establish a relationship model based on variant long short-term memory which we propose between current time series data of the polishing manipulator and data of the force sensor. (3) Data prediction module. A large number of sensorless polishing robots of the same type can utilize that model to predict force time series. (4) Trajectory optimization module. The polishing trajectories can be adjusted according to the prediction sequences. The experiments verified that the relational model we proposed has an accurate prediction, small error, and a manipulator taking advantage of this method has a better polishing effect.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1099
Author(s):  
María José Rodríguez-Torres ◽  
Ainoa Morillas-España ◽  
José Luis Guzmán ◽  
Francisco Gabriel Acién

One of the most critical variables in microalgae-related processes is the pH; it directly determines the overall performance of the production system especially when coupling with wastewater treatment. In microalgae-related wastewater treatment processes, the adequacy of pH has a large impact on the microalgae/bacteria consortium already developing on these systems. For cost-saving reasons, the pH is usually controlled by classical On/Off control algorithms during the daytime period, typically with the dynamics of the system and disturbances not being considered in the design of the control system. This paper presents the modelling and pH control in open photobioreactors, both raceway and thin-layer, using advanced controllers. In both types of photobioreactors, a classic control was implemented and compared with a Proportional–Integral (PI) control, also the operation during only the daylight period and complete daily time was evaluated. Thus, three major variables already studied include (i) the type of reactors (thin-layers and raceways), (ii) the type of control algorithm (On/Off and PI), and (iii) the control period (during the daytime and throughout the daytime and nighttime). Results show that the pH was adequately controlled in both photobioreactors, although each type requires different control algorithms, the pH control being largely improved when using PI controllers, with the controllers allowing us to reduce the total costs of the process with the reduction of CO2 injections. Moreover, the control during the complete daily cycle (including night) not only not increases the amount of CO2 to be injected, otherwise reducing it, but also improves the overall performance of the production process. Optimal pH control systems here developed are highly useful to develop robust large-scale microalgae-related wastewater treatment processes.


Sign in / Sign up

Export Citation Format

Share Document