Gastropod Morphology and Function

1985 ◽  
Vol 13 ◽  
pp. 138-156 ◽  
Author(s):  
Carole S. Hickman

The Class Gastropoda is one of the most morphologically and functionally diverse groups of living organisms. The diversity is even greater when major morphological (and implied functional) departures are added in from the more than 500 million years of fossil record of the group. There are a number of good basic illustrated accounts of the comparative morphology of the shell, external and internal anatomy, and radula (see especially Cox, 1960; Fretter and Graham, 1962; Hyman, 1967). There are no corresponding accounts of function. Accounts of gastropod ecology, behavior, and life habits are traditionally treated separately and outside of the morphological framework. As a result, the terminology and classification systems developed to describe gastropod form are separate from those dealing with gastropod function.

1985 ◽  
Vol 13 ◽  
pp. 88-101 ◽  
Author(s):  
Adolf Seilacher

This part of our course builds on the assumption that evolutionary change, although being stochastic in principle, is channeled by external and internal constraints to such a degree that it becomes quasi-predictable – or at least understandable. On this basis it makes sense to use the old methods of comparative morphology in the new framework of constructional morphology (Seilacher, 1970) in order to recognize patterns and to interpret them as trends and evolutionary pathways. For such an approach, bivalves are particularly suited:1. they deviate little from a common design (for instance they never lost their shell).2. their preservable hard parts adequately reflect the developmental biography of each individual.3. their shell form expresses the compromise between developmental constraints and functional paradigm with little interference from soft part anatomy, physiology and biotic interactions.4. they are diversified enough to provide many examples of parallel adaptations for model testing, particularly if we include the fossil record.


2021 ◽  
Vol 22 (5) ◽  
pp. 2536
Author(s):  
Rong-Jane Chen ◽  
Chiao-Ching Huang ◽  
Rosita Pranata ◽  
Yu-Hsuan Lee ◽  
Yu-Ying Chen ◽  
...  

Silver nanoparticles pose a potential risk to ecosystems and living organisms due to their widespread use in various fields and subsequent gradual release into the environment. Only a few studies have investigated the effects of silver nanoparticles (AgNPs) toxicity on immunological functions. Furthermore, these toxic effects have not been fully explored. Recent studies have indicated that zebrafish are considered a good alternative model for testing toxicity and for evaluating immunological toxicity. Therefore, the purpose of this study was to investigate the toxicity effects of AgNPs on innate immunity using a zebrafish model and to investigate whether the natural compound pterostilbene (PTE) could provide protection against AgNPs-induced immunotoxicity. Wild type and neutrophil- and macrophage-transgenic zebrafish lines were used in the experiments. The results indicated that the exposure to AgNPs induced toxic effects including death, malformation and the innate immune toxicity of zebrafish. In addition, AgNPs affect the number and function of neutrophils and macrophages. The expression of immune-related cytokines and chemokines was also affected. Notably, the addition of PTE could activate immune cells and promote their accumulation in injured areas in zebrafish, thereby reducing the damage caused by AgNPs. In conclusion, AgNPs may induce innate immune toxicity and PTE could ameliorate this toxicity.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3951
Author(s):  
Sarva Keihani ◽  
Verena Kluever ◽  
Eugenio F. Fornasiero

The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a ‘coding molecule’ has been largely surpassed, together with the conception that lncRNAs only represent ‘waste material’ produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Siddhartha Kundu

Abstract Objective Non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenases (i2OGdd), are a taxonomically and functionally diverse group of enzymes. The active site comprises ferrous iron in a hexa-coordinated distorted octahedron with the apoenzyme, 2-oxoglutarate and a displaceable water molecule. Current information on novel i2OGdd members is sparse and relies on computationally-derived annotation schema. The dissimilar amino acid composition and variable active site geometry thereof, results in differing reaction chemistries amongst i2OGdd members. An additional need of researchers is a curated list of sequences with putative i2OGdd function which can be probed further for empirical data. Results This work reports the implementation of $$Fe\left(2\right)OG$$ F e 2 O G , a web server with dual functionality and an extension of previous work on i2OGdd enzymes $$\left(Fe\left(2\right)OG\equiv \{H2OGpred,DB2OG\}\right)$$ F e 2 O G ≡ { H 2 O G p r e d , D B 2 O G } . $$Fe\left(2\right)OG$$ F e 2 O G , in this form is completely revised, updated (URL, scripts, repository) and will strengthen the knowledge base of investigators on i2OGdd biochemistry and function. $$Fe\left(2\right)OG$$ F e 2 O G , utilizes the superior predictive propensity of HMM-profiles of laboratory validated i2OGdd members to predict probable active site geometries in user-defined protein sequences. $$Fe\left(2\right)OG$$ F e 2 O G , also provides researchers with a pre-compiled list of analyzed and searchable i2OGdd-like sequences, many of which may be clinically relevant. $$Fe(2)OG$$ F e ( 2 ) O G , is freely available (http://204.152.217.16/Fe2OG.html) and supersedes all previous versions, i.e., H2OGpred, DB2OG.


1992 ◽  
Vol 6 ◽  
pp. 16-16 ◽  
Author(s):  
Richard K. Bambach ◽  
J. John Sepkoski

The first two ranks above the species level in the traditional Linnean hierarchy — the genus and family — are species based: genera have been erected to unify groups of morphologically similar, closely related species and families have been erected to group genera recognized as closely related because of the shared morphologic characteristics of their species. Diversity patterns of traditional genera and families thus appear congruent with those of species in (a) the Recent (e. g., latitudinal gradients in many groups), (b) compilations of all marine taxa for the entire Phanerozoic (including the stage level), (c) comparisons through time within individual taxa (e. g., Foraminifera, Rugosa, Conodonta), and (d) simulation studies. Genera and families often have a more robust fossil record of diversity than species, especially for poorly sampled groups (e. g., echinoids), because of the range-through record of these polytypic taxa. Simulation studies indicate that paraphyly among traditionally defined taxa is not a fatal problem for diversity studies; in fact, when degradation of the quality of the fossil record is modelled, both diversity and rates of origination and extinction are better represented by including paraphyletic taxa than by restricting data to monophyletic clades. This result underscores the utility of traditional rank-based analyses of the history of diversity.In contrast, the three higher ranks of the Linnean hierarchy — orders, classes and phyla — are defined and recognized by key character complexes assumed to be rooted deep in the developmental program and, therefore, considered to be of special significance. These taxa are unified on the basis of body plan and function, not species morphology. Even if paraphyletic, recognition of such taxa is useful because they represent different functional complexes that reflect biological organization and major evolutionary innovations, often with different ecological capacities. Phanerozoic diversity patterns of orders, classes and phyla are not congruent with those of lower taxa; the higher groups each increased rapidly in the early Paleozoic, during the explosive diversification of body plans in the Cambrian, and then remained stable or declined slightly after the Ordovician. The diversity history of orders superficially resembles that of lower taxa, but this is a result only of ordinal turnover among the Echinodermata coupled with ordinal radiation in the Chordata; it is not a highly damped signal derived from the diversity of species, genera, or families. Despite the stability of numbers among post-Ordovician Linnean higher taxa, the diversity of lower taxa within many of these Bauplan groups fluctuated widely, and these diversity patterns signal embedded ecologic information, such as differences in flexibility in filling or utilizing ecospace.Phylogenetic analysis is vital for understanding the origins and genealogical structure of higher taxa. Only in such fashion can convergence and its implications for ecological constraints and/or opportunities be understood. But blind insistence on the use of monophyletic classifications in all studies would obscure some of the important information contained in traditional taxonomic groupings. The developmental modifications that characterize Linnean higher taxa (and traditionally separate them from their paraphyletic ancestral taxa) provide keys to understanding the role of shifting ecology in macroevolutionary success.


2021 ◽  
Vol 14 ◽  
pp. 194008292110281
Author(s):  
Faith Thomas Mpondo ◽  
Patrick A. Ndakidemi ◽  
Anna C. Treydte

Insect pollinators provide numerous ecosystem services that support other living organisms. While pollinators play a large role in cropping systems, little is known about their presence and function in rangeland ecosystems, which have recently become fragmented and overexploited at an extraordinary rate. We assessed local Maasai knowledge on insect pollinators and how pollinators affect livelihood diversification in Simanjiro rangelands, Tanzania. Through questionnaires, key informant interviews, focus group discussions, and field observations, we found varied insect knowledge among Maasai herders. Lasioglossum of sub genus Ipomalictus and Syriphidae were the least commonly recognized pollinators as only 24%, and 7% of participants could identify them, respectively. Responses varied significantly between men and women (F = 7.397, p = .007). Commiphora africana, Acacia mellifera and Albizia anthelmintica were noted as most important bee forage plants while observations showed Aspilia mossambicensis, Justicia debile and Acacia tortilis. Most (77%) of Maasai herders showed limited ability to link pollinators and rangeland wellbeing. Beekeeping contributed to livelihood diversification for 61% of respondents, with women participating more frequently than men (χ2 = 46.962, p = .0001). Beekeeping was positively influenced by education level ( R = .421, p < .0001) and occupation ( R = .194, p = .009). Pollinator declines were attributed to climate change (47%), agriculture (37%), and habitat destruction (8%). We conclude that Maasai have limited knowledge of common pollinator groups and their roles. Community outreach and training should bridge the knowledge gap in pastoralist communities to fully realize pollinator benefits and highlight the importance of rangeland health.


2018 ◽  
Vol 34 (6) ◽  
pp. 558-565
Author(s):  
Shannon Kate Thompson ◽  
Naseer A. Kutchy ◽  
Samantha Kwok ◽  
Zulfi N.A. Rosyada ◽  
Ikhide G. Imumorin ◽  
...  

2013 ◽  
pp. 1-32 ◽  
Author(s):  
Leszek Konieczny ◽  
Irena Roterman-Konieczna ◽  
Paweł Spólnik

Paleobiology ◽  
1995 ◽  
Vol 21 (3) ◽  
pp. 248-272 ◽  
Author(s):  
Peter J. Wagner

The evolution of higher taxa among early Paleozoic gastropods is similar to that among early metazoans as a whole, as higher taxa diversified rapidly and early. There are two issues pertinent to this pattern. First, were greater morphologic changes concentrated in the early phases of evolution? Second, does the pattern better fit models of increasing phylogenetic constraints or increasing ecologic restrictions? This paper presents a phylogeny-based method designed to test whether amounts of morphologic evolution decreased over time. It also explores whether the data better fits models of increasing phylogenetic (i.e., developmental or genetic) constraint or increasing ecologic restriction. Two metrics of morphologic separation (i.e., the morphologic difference between sister-species) are used: (1) Euclidean distance in morphospace and (2) transition magnitude. The latter metric is calculated by a multivariate analysis of sister-species contrasts, which determines both types and magnitudes of morphologic transitions. The advantage of using transition magnitudes is that it balances the effects of transitions that either affect more morphometric characters or occur more frequently. Both metrics indicate that larger morphologic separations between sister-species were concentrated early in gastropod evolution. Among gastropods, gross shell morphology often reflects basic trophic strategy and function whereas basic internal anatomy does not. Transition magnitudes can be broken down into transitions associated with differences in basic trophic strategies and shell functional biology (“external”), and those associated with differences in basic internal anatomy (“internal”). Internal transition magnitudes show a highly significant decrease over time (p < 10–04) whereas external transition magnitudes show a much less significant decrease over time (p < 0.10) and no significant decrease after the earliest Ordovician (p ≅ 0.50). The results therefore suggest that increasing phylogenetic constraints played a greater role in the early evolution of gastropods than did increasing ecologic ones.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 264 ◽  
Author(s):  
José R. Dinneny

Physiology, which is often viewed as a field of study distinct from development, is technically defined as the branch of biology that explores the normal function of living organisms and their parts. Because plants normally develop continuously throughout their life, plant physiology actually encompasses all developmental processes. Viewing plant biology from a physiologist’s perspective is an attempt to understand the interconnectedness of development, form, and function in the context of multidimensional complexity in the environment. To meet the needs of an expanding human population and a degrading environment, we must understand the adaptive mechanisms that plants use to acclimate to environmental change, and this will require a more holistic approach than is used by current molecular studies. Grand challenges for studies on plant physiology require a more sophisticated understanding of the environment that plants grow in, which is likely to be at least as complex as the plant itself. Moving the lab to the field and using the field for inspiration in the lab need to be expressly promoted by the community as we work to apply the basic concepts learned through reductionist approaches toward a more integrated and realistic understanding of the plant.


Sign in / Sign up

Export Citation Format

Share Document