Deforestation and CO2 emissions in coastal Tanzania from 1990 to 2007

2011 ◽  
Vol 39 (1) ◽  
pp. 62-71 ◽  
Author(s):  
FABIANO L. GODOY ◽  
KARYN TABOR ◽  
NEIL D. BURGESS ◽  
BONIFACE P. MBILINYI ◽  
JAPHET J. KASHAIGILI ◽  
...  

SUMMARYConversion of forest to other land uses is a major contributor to climate change. The coastal forests of Tanzania have increasingly been recognized as being of global biodiversity importance, due to high rates of species endemism. Rates of forest loss are similar to those of other tropical regions, resulting in increasing levels of threat for the biological values within the remaining forest and potentially significant source of CO2 emissions. This study estimated the remaining cover and carbon stock of Tanzania's coastal forests and the CO2 emissions due to forest loss between c. 1990 and c. 2007. Coastal Tanzania contained over 273 700 ha of forest in 2007. Deforestation rates in the area have slowed from 1.0% yr−1, or > 3735 ha yr−1 during the 1990s, to 0.4% yr−1, or > 1233 ha yr−1 during 2000–2007. Despite lower deforestation rates in 2000–2007, the percentage forest lost from within reserved areas has remained steady at 0.2% yr−1 for both time periods. CO2 emissions from deforestation slowed from at least 0.63 Mt CO2 yr−1 in 1990–2000 to at least 0.20 Mt CO2 yr−1 in 2000–2007. Regional forest clearance in Tanzania is highly dynamic; while rates have slowed since 2000, forest habitat conversion has continued and there is no guarantee that future rates will remain low. A rigorous policy on reducing emissions from deforestation and degradation (REDD) should be implemented to avoid future increases in deforestation rates.

2019 ◽  
Vol 23 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Claudia Canedoli ◽  
Chiara Ferrè ◽  
Davide Abu El Khair ◽  
Emilio Padoa-Schioppa ◽  
Roberto Comolli

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 130
Author(s):  
Gedion Tsegay ◽  
Xiang-Zhou Meng

Globally, there is a serious issue in carbon stock due to high deforestation and the loss of land, limited carbon storage pools in aboveground and underground forests in different regions, and increased carbon emissions to the atmosphere. This review paper highlights the impact of exclosures on above and below ground carbon stocks in biomass as a solution to globally curb carbon emissions. The data has been analyzed dependent on the Intergovernmental Panel on Climate Change (IPCC) guidelines, the Food and Agriculture Organization (FAO) Forest Resource Assessment report (FRA, 2020), and scientific journal publications mostly from the last decade, to show the research results of carbon stock and the impact of exclosures, particularly the challenges of deforestation and erosion of land and opportunities of area exclosures to provide a general outlook for policymakers. Overall, the world’s forest regions are declining, and although the forest loss rate has slowed, it has still not stopped sufficiently because the knowledge and practice of exclosures are limited. The global forest loss and carbon stock have decreased from 7.8 million ha/yr to 4.7 million ha/yr and from 668 gigatons to 662 gigatons respectively due to multiple factors that differ across the regions. However, a move toward natural rehabilitation and exclosures to reduce the emissions of Greenhouse Gas (GHGs) is needed. In the global production of carbon, the exclosure of forests plays an important role, in particular for permanent sinks of carbon.


2017 ◽  
Vol 12 (11) ◽  
pp. 111003 ◽  
Author(s):  
C Isabella Bovolo ◽  
Daniel N M Donoghue
Keyword(s):  

Author(s):  
Rafael Cipriano da Silva ◽  
Edilene Pereira Ferreira ◽  
Antonio Carlos de Azevedo

Abstract The objective of this work was to analyze the mineralogical, morphological, and compositional modifications resulting from the weathering of diabase grains buried into soil under different land uses for up to 378 days. Samples of comminuted diabase were put into polyester bags and buried into soil under corn crop, elephant grass, and woods, being unburied and evaluated after four time periods. The samples of the remineralizer (RM) were analyzed by X-ray diffractometry, total chemical analysis, scanning electron microscopy, and Al (Ald and Alo) and Fe (Fed and Feo) contents extracted by sodium dithionite-citrate-bicarbonate (DCB) and ammonium oxalate (AAO) solutions. Plagioclases and pyroxenes were the most weathered minerals in all three land uses and showed the same pattern of elemental gains and losses. The characterization of Fe and Al solubility in DCB and AAO showed that the greatest change in these elements was from the lithogenic and crystalline to the pedogenic and amorphous phase, when compared with their total content. Plagioclases and pyroxenes were the most weathered minerals, and Fe and Al show a great transfer from the crystalline to the amorphous phase, with values up to 26 and 175, respectively, for the ratios between bags with RM/Feo and RM-control and bags with RM/Alo and RM-control.


Revista CERES ◽  
2016 ◽  
Vol 63 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Claudinei Alberto Cardin ◽  
Carlos Henrique dos Santos ◽  
Marcos Antonio Escarmínio

ABSTRACT Soils of tropical regions are more weathered and in need of conservation managements to maintain and improve the quality of its components. The objective of this study was to evaluate the availability of K, the organic matter content and the stock of total carbon of an Argisol after vinasse application and manual and mechanized harvesting of burnt and raw sugarcane, in western São Paulo.The data collection was done in the 2012/2013 harvest, in a bioenergy company in Presidente Prudente/SP. The research was arranged out following a split-plot scheme in a 5x5 factorial design, characterized by four management systems: without vinasse application and harvest without burning; with vinasse application and harvest without burning; with vinasse application and harvest after burning; without vinasse application and harvest after burning; plus native forest, and five soil sampling depths (0-10 10-20, 20-30, 30-40, 40-50 cm), with four replications. In each treatment, the K content in the soil and accumulated in the remaining dry biomass in the area, the levels of organic matter, organic carbon and soil carbon stock were determined. The mean values were compared by Tukey test. The vinasse application associated with the harvest without burning increased the K content in soil layers up to 40 cm deep. The managements without vinasse application and manual harvest after burning, and without vinasse application with mechanical harvesting without burning did not increase the levels of organic matter, organic carbon and stock of total soil organic carbon, while the vinasse application and harvest after burning and without burning increased the levels of these attributes in the depth of 0-10 cm.


2018 ◽  
Vol 24 ◽  
pp. 174-183 ◽  
Author(s):  
Jose Alan A. Castillo ◽  
Armando A. Apan ◽  
Tek Narayan Maraseni ◽  
Severino G. Salmo

Author(s):  
Ned Horning ◽  
Julie A. Robinson ◽  
Eleanor J. Sterling ◽  
Woody Turner ◽  
Sacha Spector

The country of Vietnam has long been recognized as an important region for biodiversity (Sterling et al. 2006). High-profile discoveries in the 1990s of many species new to science including large ones such as the Saola (Pseudoryx nghetinhensis), an 85 kg basal member of the cattle subfamily Bovinae and the first new genus of large land-dwelling mammal described since the okapi (Okapia johnstoni) in 1901, have focused the attention of national and international conservation organizations on Vietnam and surrounding countries in mainland Southeast Asia (Hurley et al. in prep.). Conservation action for these endemic, endangered species relies on a clear understanding of trends in habitat conversion. To track deforestation rates through time in Vietnam, Meyfroidt and Lambin (2008) combined remotely sensed data with landscape metrics such as number of patches, mean patch size, mean proximity index, and total core area index. They tested their analyses across a variety of land cover studies including those using Advanced Very High Resolution Radiometer (AVHRR), Landsat, SPOT, and MODIS data sources. They found that forest cover decreased nationally from the 1980s to the 1990s and then showed an increase between 1990 and 2000, due to plantation forests as well as natural forest regeneration. However, the effects of this forest transition on fragmentation metrics noted above differed across the country. For instance, in some places, such as central Vietnam where forest cover is relatively large and well connected, reforestation led to a decrease in forest fragmentation and secondary forests recovered rapidly. However in others, such as areas in the north where forest fragmentation dates back centuries and forests have therefore long been isolated, reforestation did not seem to have an impact on continued fragmentation and habitat loss. In this chapter we detail the importance of fragmentation and landscape metrics to ecology and conservation, outlining when and where remotely sensed data can help in these analyses. We then discuss a subset of fragmentation metrics and point to some challenges in processing fragmentation data. We provide examples of composition and connectivity metrics illuminated with examples from the remote sensing literature.


2009 ◽  
Vol 6 (2) ◽  
pp. 235-249 ◽  
Author(s):  
G. R. van der Werf ◽  
D. C. Morton ◽  
R. S. DeFries ◽  
L. Giglio ◽  
J. T. Randerson ◽  
...  

Abstract. Tropical deforestation contributes to the build-up of atmospheric carbon dioxide in the atmosphere. Within the deforestation process, fire is frequently used to eliminate biomass in preparation for agricultural use. Quantifying these deforestation-induced fire emissions represents a challenge, and current estimates are only available at coarse spatial resolution with large uncertainty. Here we developed a biogeochemical model using remote sensing observations of plant productivity, fire activity, and deforestation rates to estimate emissions for the Brazilian state of Mato Grosso during 2001–2005. Our model of DEforestation CArbon Fluxes (DECAF) runs at 250-m spatial resolution with a monthly time step to capture spatial and temporal heterogeneity in fire dynamics in our study area within the ''arc of deforestation'', the southern and eastern fringe of the Amazon tropical forest where agricultural expansion is most concentrated. Fire emissions estimates from our modelling framework were on average 90 Tg C year−1, mostly stemming from fires associated with deforestation (74%) with smaller contributions from fires from conversions of Cerrado or pastures to cropland (19%) and pasture fires (7%). In terms of carbon dynamics, about 80% of the aboveground living biomass and litter was combusted when forests were converted to pasture, and 89% when converted to cropland because of the highly mechanized nature of the deforestation process in Mato Grosso. The trajectory of land use change from forest to other land uses often takes more than one year, and part of the biomass that was not burned in the dry season following deforestation burned in consecutive years. This led to a partial decoupling of annual deforestation rates and fire emissions, and lowered interannual variability in fire emissions. Interannual variability in the region was somewhat dampened as well because annual emissions from fires following deforestation and from maintenance fires did not covary, although the effect was small due to the minor contribution of maintenance fires. Our results demonstrate how the DECAF model can be used to model deforestation fire emissions at relatively high spatial and temporal resolutions. Detailed model output is suitable for policy applications concerned with annual emissions estimates distributed among post-clearing land uses and science applications in combination with atmospheric emissions modelling to provide constrained global deforestation fire emissions estimates. DECAF currently estimates emissions from fire; future efforts can incorporate other aspects of net carbon emissions from deforestation including soil respiration and regrowth.


CATENA ◽  
2014 ◽  
Vol 121 ◽  
pp. 22-30 ◽  
Author(s):  
Wen-Feng Tan ◽  
Rui Zhang ◽  
Hua Cao ◽  
Chuan-Qin Huang ◽  
Qin-Ke Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document