Differential Toxicity of Tralkoxydim inHordeumSpecies

1993 ◽  
Vol 7 (4) ◽  
pp. 946-948 ◽  
Author(s):  
Abraham Tal ◽  
Yuval Benyamini ◽  
Baruch Rubin

In greenhouse studies, tralkoxydim applied POST at 100 to 300 g ai/ha during the three-to four-leaf stage of development were differentially toxic to threeHordeumspecies. Tralkoxydim severely injured wall barley by cessation of growth and death of the whole plant.Hordeum spontaneum, barley, and wheat were less affected by the herbicide in declining order, respectively. However, 4 wk after treatment, full recovery was observed in barley and wheat, but not inH. spontaneum, as reflected in the shoot fresh weight. Tralkoxydim could be considered as a selective herbicide in wheat and barley fields for the control of wall barley.

1995 ◽  
Vol 9 (4) ◽  
pp. 773-778 ◽  
Author(s):  
Krishna N. Reddy ◽  
Martin A. Locke ◽  
Kevin D. Howard

Greenhouse studies were conducted to investigate the effects of adjuvant and rainfall on bentazon spray retention, efficacy, and foliar washoff in hemp sesbania, sicklepod, smooth pigweed, and velvetleaf. Bentazon was applied at 0.28 to 2.24 kg ai/ha with Agri-Dex, a crop oil concentrate (COC) or Kinetic, an organiosilicone-nonionic surfactant blend (OSB) when weeds were at the three- to five-leaf stage. Plants were subjected to 2.5 cm simulated rainfall for 20 min at 1 and 24 h after application of bentazon. Shoot fresh weight reduction assessed 2 wk after treatment was similar with either adjuvant on velvetleaf and smooth pigweed. OSB enhanced bentazon efficacy in hemp sesbania and sicklepod as compared to COC. Rainfall at 1 h after application generally reduced bentazon activity in all weeds. OSB maintained bentazon activity in hemp sesbania when subjected to rainfall at 1 h after application as compared to COC. Overall, bentazon spray retention on plants was 9 to 550% higher with OSB as compared to COC among the species at 1 h after application. Amount of bentazon residue washed off from the foliage by rainfall within a weed species was relatively similar for both adjuvants except in smooth pigweed and ranged from 39 to 98% among the four weed species at 1 h after application. OSB exhibited specificity for certain weed species and the potential to minimize bentazon spray reaching the soil by increasing deposition.


Weed Science ◽  
2020 ◽  
Vol 68 (4) ◽  
pp. 373-381
Author(s):  
Se Ji Jang ◽  
Carol Mallory-Smith ◽  
Yong In Kuk

AbstractGlyphosate is easily translocated from shoots to roots and released into the rhizosphere. The objective of this study was to clarify the influence of glyphosate residues in the root tissue of glyphosate-treated weeds on wheat (Triticum aestivum L.) growth and shikimate accumulation. Foliar application to 5-leaf downy brome (Bromus tectorum L.) planted in sandy loam soil reduced wheat (‘Tubbs 06’) shoot fresh weight by 37% to 46% compared with the control when seeds were planted 0 and 1 d after applications. With Italian ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot], wheat shoot fresh weight was inhibited by 20% to 34% compared with the control at 0, 1, 3, and 5 d after applications to 1.5- and 5-leaf-stage plants. Using a different wheat cultivar (‘Stephens’), shoot fresh weight was inhibited by 19% to 43% when seeds were planted 0 d after glyphosate applications to 1.5-, 2-, and 5-leaf-stage B. tectorum and L. perenne planted in sandy loam soil compared with control. In contrast, some studies using treated L. perenne and B. tectorum planted in clay loam soil resulted in increases in wheat shoot fresh weight. Lolium perenne planted in water-saturated sandy loam soil showed no differences in either shoot or root fresh weight or shikimate accumulation in shoots or roots. Compared with the control plants, shikimate accumulation in roots increased 51- to 59-fold in wheat planted in sandy loam soil that previously contained B. tectorum and 13- to 49-fold in soil that previously contained L. perenne. In both studies, glyphosate was applied at the 1.5-leaf stage, and wheat seeds were sown 0, 1, and 3 d after glyphosate applications. Thus, plant damage caused by glyphosate was associated with increased shikimate accumulation in the root tissue. Overall, crop damage caused by glyphosate residue to target plants was strongly influenced by soil type, soil water conditions, glyphosate sensitivity, target weed species identity, and weed densities.


1993 ◽  
Vol 7 (1) ◽  
pp. 163-168 ◽  
Author(s):  
Gerald R. Stephenson ◽  
Abraham Tal ◽  
Norman A. Vincent ◽  
J. Christopher Hall

In growth room studies, POST applications of fenoxaprop-ethyl at 50 g ai ha−1 at the four- to five-leaf stage of development were non-toxic to barnyardgrass, large crabgrass, and yellow foxtail. POST applications of fenchlorazole-ethyl at 12.5 or 25.0 g ai ha−1 were also nontoxic to these same three species. However, when the two chemicals were applied in combination at the above rates they were toxic to all three species, indicating a synergistic interaction in all three species. In additional studies, a sensitive biotype of wild oat was severely injured by fenoxaprop-ethyl at 50 g ai ha−1 and a resistant biotype of wild oat was only slightly injured by fenoxaprop-ethyl at rates as high as 800 g ai ha−1. However, no significant interactions were observed between fenoxaprop-ethyl and fenchlorazole-ethyl in either of these wild oat biotypes.


1998 ◽  
Vol 131 (2) ◽  
pp. 125-133 ◽  
Author(s):  
D. C. E. WURR ◽  
D. W. HAND ◽  
R. N. EDMONDSON ◽  
J. R. FELLOWS ◽  
M. A. HANNAH ◽  
...  

Ten daylit, controlled-environment cabinets were used to investigate the possible impacts of global rises in atmospheric CO2 concentration and temperature on beetroot (Beta vulgaris L.), carrot (Daucus carota L.) and bulb onion (Allium cepa L.) plants. Their responses to CO2 concentrations of 350, 450, 550, 650 and 750 vpm and temperatures of 12, 13·5, 15, 16·5 and 18°C were examined by using a fractional factorial design for the two treatment factors. Use of the daylit cabinets allowed the plants to be grown in natural light, common atmospheric humidities (vpd 0·7 kPa) and non-limiting supplies of water and mineral nutrients.Polynomial models were used to summarize the whole plant dry weight and fresh weight yield responses and to indicate the potential impact of climate change. Additionally, the models were used to generate predictions of the percentage change in whole plant dry weight and plant fresh weight yield for the years 2025 and 2050 relative to 1992. Baseline values of 350 vpm for CO2 and a mean temperature of 13·5°C for 1992 together with forecast CO2 values of 407 and 442 vpm and temperature increases of 0·7 and 1·1 C for 2025 and 2050 respectively were used. For 2025, fresh weight yield changes of +19%, +9% and +13% were obtained for beetroot, carrot and onion crops respectively, while for 2050 the respective changes were +32%, +13% and +21%.Measurements of the ratio of the maximum diameter of the bulb to the minimum diameter of the neck for onions showed that there was little or no influence of CO2, whereas the effect of temperature was substantial. Bulbing was accelerated by high temperature and was greatly delayed at low temperature. At temperatures <15°C, the delays to bulbing resulted in the development of undesirable, thick-necked onions which tended to remain green with erect leaves. These results suggest, therefore, that a warmer climate will be advantageous for the commercial production of bulb onions in Britain.


Weed Science ◽  
1987 ◽  
Vol 35 (5) ◽  
pp. 715-719 ◽  
Author(s):  
Howard F. Harrison ◽  
Alfred Jones ◽  
Philip D. Dukes

Twenty-two sweet potato [Ipomoea batatas(L.) Lam.] clones with a wide range in metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] tolerance were used to establish narrow sense heritability estimates (h2) using a greenhouse procedure. The heritability estimates were obtained from simple linear regressions (h2= 2b) of injury rating, shoot fresh weight, and change in shoot fresh weight of offspring against the same responses of parents at metribuzin concentrations of 0, 0.3, and 0.6 ppm in the potting medium and averaged data for the two concentrations. These values ranged from 0.85 to 1.0, indicating that a recurrent mass selection process should be an appropriate approach to developing metribuzin-tolerant cultivars. Several highly tolerant clones were identified.


1992 ◽  
Vol 72 (3) ◽  
pp. 883-888 ◽  
Author(s):  
B. J. Shelp ◽  
R. Penner ◽  
Z. Zhu

Broccoli (Brassica oleracea var. italica) cultivar, Commander, characterized by low susceptibility to the hollow stem disorder commonly associated with boron (B) deficiency was compared to one with high susceptibility (cv. Stolto) and to two which are grown commercially (cvs. Baccus and Premium Crop). Beginning 3 wk after germination plants grown in a glasshouse in vermiculite were supplied continuously with a nutrient solution containing adequate B (0.5 mg L−1) or none (deficient), or were supplied initially with 0.5 mg B L−1 up to the initiation of inflorescence development after which no B was supplied. All cultivars showed visible symptoms of B deficiency (leaf midrib cracking, stem corkiness, necrotic lesions and hollowing in the stem pith) and reductions in shoot fresh weight with the zero B treatment, but Commander was least affected. Also, the B concentrations of the florets from Commander were highest and showed the lowest percent decline relative to the 0.5 mg B L−1 treatment. When B was removed from the nutrient solution at initiation of inflorescence development, the B concentrations of the florets and young leaves of all cultivars were higher than in the zero B treatment. Compared to the 0.5 mg B L−1 treatment, the B concentrations of old leaves from all cultivars were reduced, but only in Premium Crop was the floret B significantly decreased.Key words: Boron nutrition, Brassica, broccoli, nutrient deficiency, retranslocation


2020 ◽  
Vol 34 (4) ◽  
pp. 597-606
Author(s):  
Andrew B. Lueck ◽  
Thomas J. Peters ◽  
Alexa L. Lystad

AbstractHerbicides used in sugarbeet are commonly adapted from other row crops and may cause injury and yield loss often associated with environmental and edaphic factors. Glyphosate-resistant waterhemp in sugarbeet requires a PRE herbicide, such as S-metolachlor, for its control. The objectives of this research were to evaluate sugarbeet tolerance to PRE S-metolachlor, including air temperature and soil water content interactions with soil series in field and growth chamber experiments. Results from field experiments conducted in 12 environments in 2015, 2016, and 2017 indicated 2.16 or 4.32 kg ai ha−1S-metolachlor applied PRE reduced sugarbeet density and stature but did not reduce root yield, sucrose content, or recoverable sucrose compared with the untreated control in environments with soils with less than 3.5% organic matter (OM) and receiving greater than 40-mm cumulative rainfall within 14 d after planting. In the growth chamber, sugarbeet density and shoot fresh weight following S-metolachlor application was influenced by soil moisture content, air temperature, and soil series but not by S-metolachlor rate. Sugarbeet density and shoot fresh weight were reduced 15% and 106%, respectively, when S-metolachlor was applied to a Glyndon sandy loam (2.6% OM, 9.5% clay) at 100% field capacity (FC) and 14 C compared with S-metolachlor application to a Fargo silty clay (7.7% OM and 54% clay) at 100% FC and 21 C. It is concluded that field selection, rather than herbicide rate, is an important criterion for managing sugarbeet tolerance with S-metolachlor.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 433
Author(s):  
Hardeep Singh ◽  
Bruce L. Dunn ◽  
Mark Payton ◽  
Lynn Brandenberger

Dutch bucket hydroponic trials were conducted with the aim to evaluate the effects of different hydroponic fertilizers (5N-4.8P-21.6K, 5N-5.2P-21.6K, and 7N-3.9P-4.1K) on growth, fruit production, and the fruit quality (fruit shape index) parameters of two cultivars of sweet pepper (Capsicum annuum L.) and on two cultivars of eggplant (Solanum melongena L.). For sweet pepper yield, the 5N-4.8P-21.6K fertilizer was responsible for the greatest yield for both cultivars. For sweet pepper fresh and dry shoot weight interaction, the ‘Orangella’ cultivar had greater growth in 5N-4.8P-21.6K and 5N-5.2P-21.6K fertilizers, whereas there was no difference among cultivars in 7N-3.9P-4.1K. Shape index was not affected by fertilizers or cultivars. For the eggplant yield, there was no main effect nor interaction between fertilizers and cultivars for fruit yield, while the interaction between fertilizers and cultivars was significant for shoot fresh weight production. Shoot fresh weight was greater for ‘Angela’ than ‘Jaylo’ in 5N-4.8P-21.6K and 7N-3.9P-4.1K. Furthermore, both eggplant cultivars were affected with yellowing of fruits in all fertilizer treatments after 2 months, which was probably due to the accumulation of nutrients in the closed hydroponic system. Therefore, hydroponic producers could select 5N-4.8P-21.6K and 5N-5.2P-21.6K fertilizers for the cultivation of the ‘Orangella’ cultivar of sweet pepper based on yield. It is important to evaluate more fertilizers and cultivars for eggplant hydroponic cultivation.


2011 ◽  
Vol 62 (5) ◽  
pp. 374 ◽  
Author(s):  
M. R. Islam ◽  
S. C. (Yani) Garcia ◽  
D. Henry

This study was conducted to investigate the potentials of normalised difference vegetation index (NDVI), nitrogen (N) concentration (%), and N content (g/plant) of whole maize plant to estimate yield and nutritive value of hybrid forage maize. Hybrid forage maize was grown with two rates of pre-sowing fertiliser N (0, 135 kg/ha) and three rates of post-sowing fertiliser N (0, 79, 158 kg N/ha) applied at the six-leaf stage. Data on the NDVI and N (% and g/plant) of maize were collected at 2-, 3-, 6-, 8-, 12-, 16-, 18-leaf stages and at harvest. Metabolisable energy (ME) content of the whole maize plant at harvest was estimated from in vitro digestibility. Simple, polynomial, and multiple regression analyses were conducted and only the best-fit models were selected. The 8-leaf stage was found to be the most effective stage for use of the NDVI in predicting biomass yield (R2 = 0.81), grain yield (R2 = 0.72), and N (%) (R2 = 0.92) of forage maize. Nitrogen (%) at the 8-leaf stage was also best related to biomass yield (R2 = 0.88). Multiple regressions at the 3-leaf stage increased the coefficient of determination for both biomass yield and grain yield (R2 = 0.77) over the relationships obtained from N (%) of the whole plant at 2- or 3-leaf stage. The NDVI and N (%) of the whole plant at 8-leaf stage were the best predictors of yield, but failed to predict ME content of the hybrid forage maize. Multiple regression models at the 3-leaf stage were almost as effective as the NDVI and N (%) of whole maize plant at the 8-leaf stage in predicting biomass and grain yield of forage maize.


1981 ◽  
Vol 8 (1) ◽  
pp. 66-73 ◽  
Author(s):  
G. A. Buchanan ◽  
E. W. Hauser ◽  
R. M. Patterson

Abstract Experiments were conducted from 1975 to 1977 to determine the efficacy of herbicides for control of bur gherkin (Cucumis anguria L.) in peanuts (Arachis hypogaea L.). Most bur gherkins seed planted in the field germinated in the upper 2.5 cm of soil, although some seed germinated from 7 cm. In greenhouse and field experiments, preplant-incorporated applications of vernolate (S-propyl dipropylthiocarbamate) substantially reduced the green weight of bur gherkin plants and also improved the efficacy of several cracking and postemergence herbicidal treatments. Postemergence treatment sequences were much more effective when they were begun while bur gherkins were in the cotyledonary stage of development rather than the 3- to 5-leaf stage. Preplanting application and incorporation of vernolate + benefin (N-butyl-N-ethyl-α,α,α-trifluoro-2,6-dinitro-p-toluidine), followed by a cracking application of alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] + naptalam (N-1-naphthylphthalamic acid) + dinoseb (2-sec-butyl-4,6-dinitrophenol), followed by dinoseb controlled bur gherkins. Some of the most intensive herbicide programs reduced the yield of peanuts in some experiments. Bur gherkin plants that survived the herbicide treatments produced substantial quantities of fruit and seed.


Sign in / Sign up

Export Citation Format

Share Document