scholarly journals The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle

2003 ◽  
Vol 131 (2) ◽  
pp. 957-966 ◽  
Author(s):  
R. R. REGOES ◽  
J. W. HOTTINGER ◽  
L. SYGNARSKI ◽  
D. EBERT

In simple epidemiological models that describe the interaction between hosts with their parasites, the infection process is commonly assumed to be governed by the law of mass action, i.e. it is assumed that the infection rate depends linearly on the densities of the host and the parasite. The mass-action assumption, however, can be problematic if certain aspects of the host–parasite interaction are very pronounced, such as spatial compartmentalization, host immunity which may protect from infection with low doses, or host heterogeneity with regard to susceptibility to infection. As deviations from a mass-action infection rate have consequences for the dynamics of the host–parasite system, it is important to test for the appropriateness of the mass-action assumption in a given host–parasite system. In this paper, we examine the relationship between the infection rate and the parasite inoculum for the water flee Daphnia magna and its bacterial parasite Pasteuria ramosa. We measured the fraction of infected hosts after exposure to 14 different doses of the parasite. We find that the observed relationship between the fraction of infected hosts and the parasite dose is largely consistent with an infection process governed by the mass-action principle. However, we have evidence for a subtle but significant deviation from a simple mass-action infection model, which can be explained either by some antagonistic effects of the parasite spores during the infection process, or by heterogeneity in the hosts' susceptibility with regard to infection.

2012 ◽  
Vol 279 (1741) ◽  
pp. 3176-3183 ◽  
Author(s):  
Matthew D. Hall ◽  
Dieter Ebert

Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host–parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host–parasite interactions following the penetration of the parasite into the host have a distinct temporal component.


2010 ◽  
Vol 277 (1698) ◽  
pp. 3291-3297 ◽  
Author(s):  
Stuart K. J. R. Auld ◽  
Jennifer A. Scholefield ◽  
Tom J. Little

Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa . We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host–parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence—a genetically determined barrier to parasite establishment and a cellular response once establishment has begun.


PLoS Genetics ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. e1006596 ◽  
Author(s):  
Gilberto Bento ◽  
Jarkko Routtu ◽  
Peter D. Fields ◽  
Yann Bourgeois ◽  
Louis Du Pasquier ◽  
...  

2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Pablo Marshall

Abstract Objectives: Coronavirushas had profound effects on people’s lives and the economy of many countries, generating controversy between the need to establish quarantines and other social distancing measures to protect people’s health and the need to reactivate the economy. This study proposes and applies a modification of the SIR infection model to describe the evolution of coronavirus infections and to measure the effect of quarantine on the number of people infected. Methods: Two hypotheses, not necessarily mutually exclusive, are proposed for the impact of quarantines. According to the first hypothesis, quarantine reduces the infection rate, delaying new infections over time without modifying the total number of people infected at the end of the wave. The second hypothesis establishes that quarantine reduces the population infected in the wave. The two hypotheses are tested with data for a sample of 10 districts in Santiago, Chile. Results: The results of applying the methodology show that the proposed model describes well the evolution of infections at the district level. The data shows evidence in favor of the first hypothesis, quarantine reduces the infection rate; and not in favor of the second hypothesis, that quarantine reduces the population infected. Districts of higher socio-economic levels have a lower infection rate, and quarantine is more effective. Conclusions: Quarantine, in most districts, does not reduce the total number of people infected in the wave; it only reduces the rate at which they are infected. The reduction in the infection rate avoids peaks that may collapse the health system.


1989 ◽  
Vol 176 ◽  
Author(s):  
P.L. Brown ◽  
A. Haworth ◽  
R. McCrohon ◽  
S.M. Sharland ◽  
C.J. Tweed

ABSTRACTA joint experimental and modelling programme is reported, which aims to improve our understanding of sorption processes of radionuclides onto repository materials. Diffusion/sorption experiments of sorption onto cement are described, although results are limited at this stage. The modelling studies use the coupled chemical equilibria and transport code CHEQMATE to simulate some of these experiments. The chemical part of the model is based on a simple mass-action model of sorption. More detailed comparisons will continue when the experiments are terminated, and the samples are sectioned.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Qilin Sun ◽  
Lequan Min

This paper studies a modified human immunodeficiency virus (HIV) infection differential equation model with a saturated infection rate. It is proved that if the basic virus reproductive numberR0of the model is less than one, then the infection-free equilibrium point of the model is globally asymptotically stable; ifR0of the model is more than one, then the endemic infection equilibrium point of the model is globally asymptotically stable. Based on the clinical data from HIV drug resistance database of Stanford University, using the proposed model simulates the dynamics of the two groups of patients’ anti-HIV infection treatment. The numerical simulation results are in agreement with the evolutions of the patients’ HIV RNA levels. It can be assumed that if an HIV infected individual’s basic virus reproductive numberR0<1then this person will recover automatically; if an antiretroviral therapy makes an HIV infected individual’sR0<1, this person will be cured eventually; if an antiretroviral therapy fails to suppress an HIV infected individual’s HIV RNA load to be of unpredictable level, the time that the patient’s HIV RNA level has achieved the minimum value may be the starting time that drug resistance has appeared.


2020 ◽  
Vol 287 (1930) ◽  
pp. 20201017
Author(s):  
James R. Whiting ◽  
Muayad A. Mahmud ◽  
Janette E. Bradley ◽  
Andrew D. C. MacColl

Seasonal disease and parasitic infection are common across organisms, including humans, and there is increasing evidence for intrinsic seasonal variation in immune systems. Changes are orchestrated through organisms' physiological clocks using cues such as day length. Ample research in diverse taxa has demonstrated multiple immune responses are modulated by photoperiod, but to date, there have been few experimental demonstrations that photoperiod cues alter susceptibility to infection. We investigated the interactions among photoperiod history, immunity and susceptibility in laboratory-bred three-spined stickleback (a long-day breeding fish) and its external, directly reproducing monogenean parasite Gyrodactylus gasterostei . We demonstrate that previous exposure to long-day photoperiods (PLD) increases susceptibility to infection relative to previous exposure to short days (PSD), and modifies the response to infection for the mucin gene muc2 and Treg cytokine foxp3a in skin tissues in an intermediate 12 L : 12 D photoperiod experimental trial. Expression of skin muc2 is reduced in PLD fish, and negatively associated with parasite abundance. We also observe inflammatory gene expression variation associated with natural inter-population variation in resistance, but find that photoperiod modulation of susceptibility is consistent across host populations. Thus, photoperiod modulation of the response to infection is important for host susceptibility, highlighting new mechanisms affecting seasonality of host–parasite interactions.


2020 ◽  
Vol 287 (1920) ◽  
pp. 20192386
Author(s):  
Frida Ben-Ami ◽  
Christian Orlic ◽  
Roland R. Regoes

Exposure to a pathogen primes many organisms to respond faster or more efficiently to subsequent exposures. Such priming can be non-specific or specific, and has been found to extend across generations. Disentangling and quantifying specific and non-specific effects is essential for understanding the genetic epidemiology of a system. By combining a large infection experiment and mathematical modelling, we disentangle different transgenerational effects in the crustacean model Daphnia magna exposed to different strains of the bacterial parasite Pasteuria ramosa . In the experiment, we exposed hosts to a high dose of one of three parasite strains, and subsequently challenged their offspring with multiple doses of the same (homologous) or a different (heterologous) strain. We find that exposure of Daphnia to Pasteuria decreases the susceptibility of their offspring by approximately 50%. This transgenerational protection is not larger for homologous than for heterologous parasite challenges. Methodologically, our work represents an important contribution not only to the analysis of immune priming in ecological systems but also to the experimental assessment of vaccines. We present, for the first time, an inference framework to investigate specific and non-specific effects of immune priming on the susceptibility distribution of hosts—effects that are central to understanding immunity and the effect of vaccines.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yongmei Su ◽  
Sinuo Liu ◽  
Shurui Song ◽  
Xiaoke Li ◽  
Yongan Ye

In this paper, a fractional-order HBV model was set up based on standard mass action incidences and quasisteady assumption. The basic reproductive number R0 and the cytotoxic T lymphocytes’ immune-response reproductive number R1 were derived. There were three equilibrium points of the model, and stable analysis of each equilibrium point was given with corresponding hypothesis about R0 or R1. Some numerical simulations were also given based on HBeAg clinical data, and the simulation showed that there existed positive logarithmic correlation between the number of infected cells and HBeAg, which was consistent with the clinical facts. The simulation also showed that the clinical individual differences should be reflected by the fractional-order model.


Sign in / Sign up

Export Citation Format

Share Document