Strong-wind events and their impact on the near-surface climate at Kohnen Station on the Antarctic Plateau

2007 ◽  
Vol 19 (4) ◽  
pp. 507-519 ◽  
Author(s):  
Dirk van As ◽  
Michiel R. van den Broeke ◽  
Michiel M. Helsen

AbstractStrong-wind events occur 10–20 times per year at Kohnen Station, East Antarctica (75°00′S, 0°04′E, 2892 m above sea level), and are often caused by warm-core cyclones in the north-eastern Weddell Sea. An uncommon event occurred in January 2002, when blocking both in the south Atlantic Ocean and in the south Tasman Sea caused a split-up of the circumpolar vortex, and large amounts of heat and moisture were transported onto the Antarctic Plateau. During strong-wind events over the plateau the near-surface temperature can increase by tens of degrees, which is partly caused by the advection of heat, but for an important part by the destruction of the stable temperature-deficit layer by enhanced vertical mixing. The temperature rise is larger during the winter/night than during the summer/day, due to a better-developed temperature deficit. Snowdrift during the January 2002 event linearly increased surface roughness for momentum with friction velocity, for values over about 0.18 m s-1. The cloud cover during the event reduced down-welling solar radiation by 32%, and increased the albedo from about 0.86 to 0.92. Changes in longwave radiation largely cancelled the daytime changes in shortwave radiation, thus net radiation was most affected at night.

2015 ◽  
Vol 9 (4) ◽  
pp. 4499-4538
Author(s):  
Q. Libois ◽  
G. Picard ◽  
L. Arnaud ◽  
M. Dumont ◽  
M. Lafaysse ◽  
...  

Abstract. On the Antarctic Plateau, snow specific surface area (SSA) close to the surface shows complex variations at daily to seasonal scales which affect the surface albedo and in turn the surface energy budget of the ice sheet. While snow metamorphism, precipitation and strong wind events are known to drive SSA variations, usually in opposite ways, their relative contributions remain unclear. Here, a comprehensive set of SSA observations at Dome C is analysed with respect to meteorological conditions to assess the respective roles of these factors. The results show an average two-to-three-fold SSA decrease from October to February in the topmost 10 cm, in response to the increase of air temperature and absorption of solar radiation in the snowpack during spring and summer. Surface SSA is also characterised by significant daily to weekly variations, due to the deposition of small crystals with SSA up to 100 m2 kg−1 onto the surface during snowfall and blowing snow events. To complement these field observations, the detailed snowpack model Crocus is used to simulate SSA, with the intent to further investigate the previously found correlation between inter-annual variability of summer SSA decrease and summer precipitation amount. To this end, Crocus parameterizations have been adapted to Dome C conditions, and the model was forced by ERA-Interim reanalysis. It successfully matches the observations at daily to seasonal time scales, except for few cases when snowfalls are not captured by the reanalysis. On the contrary, the inter-annual variability of summer SSA decrease is poorly simulated when compared to 14 years of microwave satellite data sensititve to the near surface SSA. A simulation with disabled summer precipitation confirms the weak influence in the model of the precipitation on metamorphism, with only 6 % enhancement. However we found that disabling strong wind events in the model is sufficient to reconciliate the simulations with the observations. This suggests that Crocus reproduces well the contributions of metamorphism and precipitation on surface SSA, but that snow compaction by the wind might be overestimated in the model.


2015 ◽  
Vol 9 (6) ◽  
pp. 2383-2398 ◽  
Author(s):  
Q. Libois ◽  
G. Picard ◽  
L. Arnaud ◽  
M. Dumont ◽  
M. Lafaysse ◽  
...  

Abstract. On the Antarctic Plateau, snow specific surface area (SSA) close to the surface shows complex variations at daily to seasonal scales which affect the surface albedo and in turn the surface energy budget of the ice sheet. While snow metamorphism, precipitation and strong wind events are known to drive SSA variations, usually in opposite ways, their relative contributions remain unclear. Here, a comprehensive set of SSA observations at Dome C is analysed with respect to meteorological conditions to assess the respective roles of these factors. The results show an average 2-to-3-fold SSA decrease from October to February in the topmost 10 cm in response to the increase of air temperature and absorption of solar radiation in the snowpack during spring and summer. Surface SSA is also characterized by significant daily to weekly variations due to the deposition of small crystals with SSA up to 100 m2 kg−1 onto the surface during snowfall and blowing snow events. To complement these field observations, the detailed snowpack model Crocus is used to simulate SSA, with the intent to further investigate the previously found correlation between interannual variability of summer SSA decrease and summer precipitation amount. To this end, some Crocus parameterizations have been adapted to Dome C conditions, and the model was forced by ERA-Interim reanalysis. It successfully matches the observations at daily to seasonal timescales, except for the few cases when snowfalls are not captured by the reanalysis. On the contrary, the interannual variability of summer SSA decrease is poorly simulated when compared to 14 years of microwave satellite data sensitive to the near-surface SSA. A simulation with disabled summer precipitation confirms the weak influence in the model of the precipitation on metamorphism, with only 6 % enhancement. However, we found that disabling strong wind events in the model is sufficient to reconciliate the simulations with the observations. This suggests that Crocus reproduces well the contributions of metamorphism and precipitation on surface SSA, but snow compaction by the wind might be overestimated in the model.


2016 ◽  
Vol 16 (12) ◽  
pp. 8053-8069 ◽  
Author(s):  
Michel Legrand ◽  
Susanne Preunkert ◽  
Joël Savarino ◽  
Markus M. Frey ◽  
Alexandre Kukui ◽  
...  

Abstract. Surface ozone has been measured since 2004 at the coastal East Antarctic site of Dumont d'Urville (DDU), and since 2007 at the Concordia station located on the high East Antarctic plateau. This paper discusses long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites. At Concordia, near-surface ozone data were complemented by balloon soundings and compared to similar measurements done at the South Pole. The DDU record is compared to those obtained at the coastal site of Syowa, also located in East Antarctica, as well as the coastal sites of Neumayer and Halley, both located on the coast of the Weddell Sea in West Antarctica. Surface ozone mixing ratios exhibit very similar seasonal cycles at Concordia and the South Pole. However, in summer the diurnal cycle of ozone is different at the two sites with a drop of ozone in the afternoon at Concordia but not at the South Pole. The vertical distribution of ozone above the snow surface also differs. When present, the ozone-rich layer located near the ground is better mixed and deeper at Concordia (up to 400 m) than at the South Pole during sunlight hours. These differences are related to different solar radiation and wind regimes encountered at these two inland sites. DDU appears to be the coastal site where the impact of the late winter/spring bromine chemistry is the weakest, but where the impact of elevated ozone levels caused by NOx snow emissions from the high Antarctic plateau is the highest. The highest impact of the bromine chemistry is seen at Halley and Neumayer, and to a lesser extent at Syowa. These three sites are only weakly impacted by the NOx chemistry and the net ozone production occurring on the high Antarctic plateau. The differences in late winter/spring are attributed to the abundance of sea ice offshore from the sites, whereas those in summer are related to the topography of East Antarctica that promotes the katabatic flow bringing oxidant-rich inland air masses to the site. There appears to be a decreasing change in summer surface ozone at the two East Antarctic sites of Concordia and DDU over the most recent period (2004–2014 and 2007–2014). Further research, including continued monitoring, is needed at these two sites to better separate the effect of synoptic transport from possible change of NOx snow emissions in response to recovery of the stratospheric ozone layer leading to penetration of more UV radiation to the surface.


2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.


2021 ◽  
Author(s):  
John King ◽  
Gareth Marshall ◽  
Steve Colwell ◽  
Clare Allen-Sader ◽  
Tony Phillips

<p> </p><p>Global atmospheric reanalyses are frequently used to drive ocean-ice models but few data are available to assess the quality of these products in the Antarctic sea ice zone. We utilise measurements from three drifting buoys that were deployed on sea ice in the southern Weddell Sea in the austral summer of 2016 to validate the representation of near-surface atmospheric conditions in the ERA-Interim and ERA5 reanalyses produced by the European Centre for Medium Range Weather Forecasts (ECMWF). The buoys carried sensors to measure atmospheric pressure, air temperature and humidity, wind speed and direction, and downwelling shortwave and longwave radiation. One buoy remained in coastal fast ice for most of 2016 while the other two drifted northward through the austral winter and exited the pack ice during the following austral summer. Comparison of buoy measurements with reanalysis data indicates that both reanalyses represent the surface pressure field in this region accurately. Reanalysis temperatures are, however, biased warm by around 2 °C in both products, with the largest biases seen at the lowest temperatures. We suggest that this bias is a result of the simplified representation of sea ice in the reanalyses, in particular the lack of an insulating snow layer on top of the ice. We use a simple surface energy balance model to investigate the impact of the reanalysis biases on sea ice thermodynamics.</p>


Author(s):  
David Beerling

By arriving at the South Pole on 14 December 1911, the Norwegian explorer Roald Amundsen (1872–1928) reached his destination over a month ahead of the British effort led by Captain Robert Falcon Scott (1868–1912). As Scott’s party approached the South Pole on 17 January 1912, they were devastated to see from afar the Norwegian’s black flag. On arrival, they discovered the remains of his camp with ski and sledge tracks, and numerous dog footprints. Amundsen, it turned out, had used dogs and diversionary tactics to secure victory while the British team had man-hauled their sledges. These differences were not lost on The Times in London, which marked the achievement with muted praise, declaring it ‘not quite in accordance with the spirit of fair and open competition which hitherto marked Antarctic exploration’. Exhausted, Scott and his men spent time the following day making scientific observations around the Pole, erected ‘our poor slighted Union Jack’, and photographed themselves in front of it (Plate 11). Lieutenant Bowers took the picture by pulling a string to activate the shutter. It is perhaps the most well known, and at the same time the saddest picture, of the entire expedition—a poignant image of the doomed party, all of whom look utterly fed up as if somehow sensing the fate awaiting them. The cold weather, icy wind, and dismal circumstances led Scott to acerbically remark in his diary: ‘Great god! This is an awful place and terrible enough to have laboured to it without the reward of priority.’ By this time, the party had been hauling their sledges for weeks, and all the men were suffering from dehydration, owing to fatigue and altitude sickness from being on the Antarctic plateau that sits nearly 3000m above sea level. Three of them, Captain Oates, Seaman Evans, and Bowers, were badly afflicted with frostbitten noses and cheeks. Ahead lay the return leg, made all the more unbearable by the crippling psychological blow of knowing they had been second to the Pole. After a gruelling 21-day trek in bitterly cold summit winds, the team reached their first cache of food and fuel, covering the distance six days faster than it had taken them to do the leg in the other direction.


2019 ◽  
Vol 20 (3) ◽  
pp. 467-487 ◽  
Author(s):  
David M. W. Pritchard ◽  
Nathan Forsythe ◽  
Hayley J. Fowler ◽  
Greg M. O’Donnell ◽  
Xiao-Feng Li

Abstract Data paucity is a severe barrier to the characterization of Himalayan near-surface climates. Regional climate modeling can help to fill this gap, but the resulting data products need critical evaluation before use. This study aims to extend the appraisal of one such dataset, the High Asia Refined Analysis (HAR). Focusing on the upper Indus basin (UIB), the climatologies of variables needed for process-based hydrological and cryospheric modeling are evaluated, leading to three main conclusions. First, precipitation in the 10-km HAR product shows reasonable correspondence with most in situ measurements. It is also generally consistent with observed runoff, while additionally reproducing the UIB’s strong vertical precipitation gradients. Second, the HAR shows seasonally varying bias patterns. A cold bias in temperature peaks in spring but reduces in summer, at which time the high bias in relative humidity diminishes. These patterns are concurrent with summer overestimation (underestimation) of incoming shortwave (longwave) radiation. Finally, these seasonally varying biases are partly related to deficiencies in cloud, snow, and albedo representations. In particular, insufficient cloud cover in summer leads to the overestimation of incoming shortwave radiation. This contributes to the reduced cold bias in summer by enhancing surface warming. A persistent high bias in albedo also plays a critical role, particularly by suppressing surface heating in spring. Improving representations of cloud, snow cover, and albedo, and thus their coupling with seasonal climate transitions, would therefore help build upon the considerable potential shown by the HAR to fill a vital data gap in this immensely important basin.


1999 ◽  
Vol 29 ◽  
pp. 55-60 ◽  
Author(s):  
Qin Dahe ◽  
Paul A. Mayewski ◽  
Ren Jiawen ◽  
Xiao Cunde ◽  
Sun Junying

AbstractGlaciochemical analysis of surface snow samples, collected along a profile crossing the Antarctic ice sheet from the Larsen Ice Shelf, Antarctic Peninsula, via the Antarctic Plateau through South Pole, Vostok and Komsomolskaya to Mirny station (at the east margin of East Antarctica), shows that the Weddell Sea region is an important channel for air masses to the high plateau of the Antarctic ice sheet (>2000 m a.s.l.). This opinion is supported by the following. (1) The fluxes of sea-salt ions such as Na+, Mg2 + and CF display a decreasing trend from the west to the east of interior Antarctica. In |eneral, as sea-salt aerosols are injected into the atmosphere over the Antarctic ice sheet from the Weddell Sea, large aerosols tend to decrease. For the inland plateau, few large particles of sea-salt aerosol reach the area, and the sea-salt concentration levels are low (2) The high altitude of the East Antarctic plateau, as well as the polar cold high-pressure system, obstruct the intrusive air masses mainly from the South Indian Ocean sector. (3) For the coastal regions of the East Antarctic ice sheet, the elevation rises to 2000 m over a distance from several to several tens of km. High concentrations of sea salt exist in snow in East Antarctica but are limited to a narrow coastal zone. (4) Fluxes of calcium and non-sea-salt sulfate in snow from the interior plateau do not display an eastward-decreasing trend. Since calcium is mainly derived from crustal sources, and nssSO42- is a secondary aerosol, this again confirms that the eastward-declining tendency of sea-salt ions indicates the transfer direction of precipitation vapor.


2017 ◽  
Vol 145 (12) ◽  
pp. 4727-4745 ◽  
Author(s):  
Elena Tomasi ◽  
Lorenzo Giovannini ◽  
Dino Zardi ◽  
Massimiliano de Franceschi

The paper presents the results of high-resolution simulations performed with the WRF Model, coupled with two different land surface schemes, Noah and Noah_MP, with the aim of accurately reproducing winter season meteorological conditions in a typical Alpine valley. Accordingly, model results are compared against data collected during an intensive field campaign performed in the Adige Valley, in the eastern Italian Alps. In particular, the ability of the model in reproducing the time evolution of 2-m temperature and of incoming and outgoing shortwave and longwave radiation is examined. The validation of model results highlights that, in this context, WRF reproduces rather poorly near-surface temperature over snow-covered terrain, with an evident underestimation, during both daytime and nighttime. Furthermore it fails to capture specific atmospheric processes, such as the temporal evolution of the ground-based thermal inversion. The main cause of these errors lies in the miscalculation of the mean gridcell albedo, resulting in an inaccurate estimate of the reflected solar radiation calculated by both Noah and Noah_MP. Therefore, modifications to the initialization, to the land-use classification, and to both land surface models are performed to improve model results, by intervening in the calculation of the albedo, of the snow cover, and of the surface temperature. Qualitative and quantitative analyses show that, after these changes, a significant improvement in the comparability between model results and observations is achieved. In particular, outgoing shortwave radiation is lowered, 2-m temperature maxima increased accordingly, and ground-based thermal inversions are better captured.


2020 ◽  
Author(s):  
Christy Swann ◽  
sarah trimble

<p>Quantifying aeolian transport within the swash zone is critical to understanding feedbacks between aeolian and nearshore processes in coastal environments. In the swash zone, high moisture contents are thought to significantly limit the amount of sediment available for transport by wind. These assertions are supported by empirical relationships between the threshold for aeolian transport and moisture content that show gravimetric moisture contents greater than ~5% severely restrict the transport of windblown sand. Yet, during strong wind events aeolian transport can occur in the swash zone where moisture content is significantly higher. Here, we present field observations of fully-saturated aeolian transport on a wet beach and highlight the proficiency of winds to sustain aeolian transport in the swash zone.  </p><p>Field observations were collected during the passing of Tropical Storm Nester on a dissipative beach north of Corolla, North Carolina, USA in the early morning hours of October 19. 2019. Beach width ranged between ~50 and 100 meters and observations were made during a falling tide. Alignment of predominate winds and beach orientation provided a nearly unlimited fetch with an abundant sediment supply from the drier upper beach. Mean grain sizes of surface grab samples in the swash zone were 0.17 to 0.19 mm and moisture content in the swash zone ranged from 8 to 13% during the observational period.</p><p>Videos of fully developed, saturated transport in the form of nested streamers, approximately 5-20 cm wide, were recorded. A vertical array of cup and sonic anemometers measured near surface fluid flow. Cup anemometers were sampled at 1 Hz and observed wind velocities at 7, 18, 44, 68 and 93 cm above the surface. Ultrasonic anemometers sampled 3 dimensional velocity components at 32 Hz via at 53 and ~100 cm.  Sustained wind velocities were 9.5 m/s at 93 cm above the surface with gusts reaching 14 m/s. A series of vertically-segregating saltation traps captured particles in transport and showed minimal size-segregation with height. Gravimetric moisture content of captured saltation ranged from 0 to 4%.</p><p>Pulses of abundant aeolian transport during the storm were largely driven by largescale coherent eddies initiating transport from the drier upper beach. These upper beach sediments sustained transport on the lower, wet beach. The spatial and temporal variability of the exceedance of both fluid and impact thresholds strongly controls transport. These field observations demonstrate the proficiency of wind to transport of large volumes sand in the swash zone during strong alongshore wind events.</p>


Sign in / Sign up

Export Citation Format

Share Document