Material Dependence of Sputtering Behavior During Focused Ion Beam Milling: A Correlation Between Monte Carlo Based Simulation and Empirical Observation

1998 ◽  
Vol 4 (S2) ◽  
pp. 858-859 ◽  
Author(s):  
B.I. Prenitzer ◽  
L.A. Giannuzzi ◽  
S.R. Brown ◽  
R.B. Irwin ◽  
T.L. Shofner ◽  
...  

The focused ion beam (FIB) lift-out method is a high precision technique by which site-specific cross-section transmission electron microscopy (TEM) specimens may be rapidly prepared from virtually any material. The technique is particularly useful when the sample geometry or composition is complex (e.g., fibers, powders, composites and interfaces). In addition to the preparation of TEM specimens, FIB milling has also found widespread utility in micromachining and microfabrication applications as well as specimen preparation for scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS).As the applications of the FEB instrument continue to become more universally recognized, the need to understand the interrelationships between the target material, processing parameters, and process efficiency of the milling phenomena becomes more critical. Incident ion attack angle, target material stopping efficiency and sputtering yield, Y, are important variables governing the milling process. TRIM, a binary collision approximation Monte Carlo simulation code, is used to physically model variables that influence FIB sputtering behavior.

2003 ◽  
Vol 9 (3) ◽  
pp. 216-236 ◽  
Author(s):  
B.I. Prenitzer ◽  
C.A. Urbanik-Shannon ◽  
L.A. Giannuzzi ◽  
S.R. Brown ◽  
R.B. Irwin ◽  
...  

The focused ion beam (FIB) tool has been successfully used as both a stand alone analytical instrument and a means to prepare specimens for subsequent analysis by SEM, TEM, SIMS, XPS, and AUGER. In this work, special emphasis is given to TEM specimen preparation by the FIB lift-out technique. The fundamental ion/solid interactions that govern the FIB milling process are examined and discussed with respect to the preparation of electron transparent membranes. TRIM, a Monte Carlo simulation code, is used to physically model variables that influence FIB sputtering behavior. The results of such computer generated models are compared with empirical observations in a number of materials processed with an FEI 611 FIB workstation. The roles of incident ion attack angle, beam current, trench geometry, raster pattern, and target-material-dependent removal rates are considered. These interrelationships are used to explain observed phenomena and predict expected milling behaviors, thus increasing the potential for the FIB to be used more efficiently with reproducible results.


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


1999 ◽  
Vol 5 (S2) ◽  
pp. 740-741 ◽  
Author(s):  
C.A. Urbanik ◽  
B.I. Prenitzer ◽  
L.A. Gianhuzzi ◽  
S.R. Brown ◽  
T.L. Shofner ◽  
...  

Focused ion beam (FIB) instruments are useful for high spatial resolution milling, deposition, and imaging capabilities. As a result, FIB specimen preparation techniques have been widely accepted within the semiconductor community as a means to rapidly prepare high quality, site-specific specimens for transmission electron microscopy (TEM) [1]. In spite of the excellent results that have been observed for both high resolution (HREM) and standard TEM specimen preparation applications, a degree of structural modification is inherent to FIB milled surfaces [2,3]. The magnitude of the damage region that results from Ga+ ion bombardment is dependent on the operating parameters of the FIB (e.g., beam current, beam voltage, milling time, and the use of reactive gas assisted etching).Lattice defects occur as a consequence of FIB milling because the incident ions transfer energy to the atoms of the target material. Momentum transferred from the incident ions to the target atoms can result in the creation of point defects (e.g., vacancies, self interstitials, and interstitial and substitutional ion implantation), the generation of phonons, and plasmon excitation in the case of metal targets.


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 751 ◽  
Author(s):  
Roddatis ◽  
Lole ◽  
Jooss

The study of changes in the atomic structure of a catalyst under chemical reaction conditions is extremely important for understanding the mechanism of their operation. For in situ environmental transmission electron microscopy (ETEM) studies, this requires preparation of electron transparent ultrathin TEM lamella without surface damage. Here, thin films of Pr1-xCaxMnO3 (PCMO, x = 0.1, 0.33) and La1-xSrxMnO3 (LSMO, x = 0.4) perovskites are used to demonstrate a cross-section specimen preparation method, comprised of two steps. The first step is based on optimized focused ion beam cutting procedures using a photoresist protection layer, finally being removed by plasma-etching. The second step is applicable for materials susceptible to surface amorphization, where in situ recrystallization back to perovskite structure is achieved by using electron beam driven chemistry in gases. This requires reduction of residual water vapor in a TEM column. Depending on the gas environment, long crystalline facets having different atomic terminations and Mn-valence state, can be prepared.


Sign in / Sign up

Export Citation Format

Share Document